• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 29 (1–4) 2023, 21–26

Information Dimensions of Simple Four-Dimensional Flows

Hoover William G. 1†, Hoover Carol G. 1‡, Travis Karl P. 2

1 Ruby Valley Research Institute
601 Highway Contract 60
Ruby Valley, Nevada 89833, USA
† E-mail: hooverwilliam@yahoo.com
‡ E-mail: hoover1carol@yahoo.com

2 University of Sheffield
Department of Materials Science and Engineering
Sheffield S1 3JD, United Kingdom

Received:

Received: 4 July 2023; in final form: 13 July 2023; accepted: 14 July 2023; published online: 30 July 2023

DOI:   10.12921/cmst.2023.0000017

Abstract:

Baker Maps have long served as pedagogical tools for understanding chaos and fractal phase-space distributions. Recent work [1], following earlier efforts from 1997 [2], shows that the Kaplan-Yorke formula for information dimension disagrees with direct computation for some simple compressible Baker Maps. Here we extend this map work to simple continuous flows. We compare pointwise information dimensions to the Kaplan-Yorke dimension for a simple four-dimensional flow [3] controlling both ⟨p^4⟩ and ⟨p^2⟩: { q˙ = p ; p˙ = −q − ξp^3 − ζp ; ξ˙ = p^4 − 3p^2 ; ζ˙ = p^2 − T }. Precisely similar sets of Gaussian points could be generated with Metropolis’ Monte-Carlo simulations of harmonic oscillators in Gibbs’ canonical ensemble with f (q) = (e^(−q ^2/2))/sqrt(2π). Remarkably, we show that the dependence of the pointwise information dimension for the Gaussian distribution is linear in the inverse of the logarithm of the mesh spacing, ∝ 1/ ln(1/δ). The Hoover-Holian Gaussian oscillator problem [3] can be generalized [2–4] to some nonequilibrium steady-state problems by introducing a temperature-gradient parameter ϵ. In that case the temperature T varies from 1 − ϵ to 1 + ϵ :  T = 1 + ϵ tanh(q) so that both conservative (ϵ = 0) and dissipative (ϵ > 0) flows result.

Key words:

Baker Map, fractals, information dimension, Kaplan-Yorke dimension

References:

[1] W.G. Hoover, C.G. Hoover, A Quarter Century of Baker Map Exploration, Computational Methods in Science and Technology 29, 5–16 (2023).

[2] H.A. Posch, W.G. Hoover, Time-Reversible Dissipative Attractors In Three And Four Phase-Space Dimensions, Physical Review E 55, 6803–6810 (1997).

[3] W.G. Hoover, B.L. Holian, Kinetic Moments Method for the Canonical Ensemble Distribution, Physics Letters A 211, 253–257 (1996).

[4] W.G. Hoover, Compressible Baker Maps and Their Inverses. A Memoir for Francis Hayin Ree [1936–2020], Computational Methods in Science and Technology 26, 5–13 (2020).

[5] T. Tél, M. Gruiz, Chaotic Dynamics; An Introduction Based on Classical Mechanics, Cambridge University Press (2006).

[6] J.C. Sprott, W.G. Hoover, C.G. Hoover, Heat Conduction, and the Lack Thereof, in Time-Reversible Dynamical Systems: Generalized Nosé-Hoover Oscillators with a Temperature Gradient, Physical Review E 89, 042914 (2014).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_25_4_2019_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST