• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 24 (4) 2018, 215–220

Two Arguments that the Nontrivial Zeros of the Riemann Zeta Function are Irrational

Wolf Marek

Cardinal Stefan Wyszynski University
Faculty of Mathematics and Natural Sciences. College of Sciences
ul. Wóycickiego 1/3, Auditorium Maximum, (room 113)
PL-01-938 Warsaw, Poland
e-mail: m.wolf@uksw.edu.pl

Received:

Received: 31 October 2018; revised: 19 November 2018; accepted: 21 November 2018; published online: 07 December 2018

DOI:   10.12921/cmst.2018.0000049

Abstract:

We have used the first 2600 nontrivial zeros γl of the Riemann zeta function calculated with 1000 digits accuracy and developed them into the continued fractions. We calculated the geometrical means of the denominators of these con- tinued fractions and for all cases we get values close to the Khinchin’s constant, which suggests that γl are irrational. Next we have calculated the n-th square roots of the denominators Qn of the convergents of the continued fractions obtaining values close to the Khinchin-Lévy constant, again supporting the common opinion that γl are irrational.

Key words:

Baez-Duarte criterion, Riemann Hypothesis, zeta function

References:

[1] B. Conrey, H.M. Bui, M.P. Young, More than 41% of the zeros of the zeta function are on the critical line, Acta Arithmetica 150, 35–64 (2011).
[2] J.B.Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J.Reine. Angew. Math. 399, 1–26 (1989).
[3] D. Cvijovic ́, J. Klinowski, Continued-Fraction Expansions for the Riemann Zeta Function and Polylogarithms, Proceedings of the American Mathematical Society 125(9), 2543–2550 (1997). 
[4] P. Elliott, The Riemann Zeta function and coin tossing, Journal für die reine und angewandte Mathematik, 254, 100–109 (1972).
[5] S.R. Finch, Mathematical Constants, Cambridge University Press, 2003.
[6] K. Ford, K. Soundararajan, A. Zaharescu, On the distribution of imaginary parts of zeros of the riemann zeta function, ii, Mathematische Annalen 343(3), 487–505 (2009).
[7] K. Ford and A. Zaharescu, On the distribution of imaginary parts of zeros of the riemann zeta function, Journal für die reine und angewandte Mathematik 2005, 03 (2005).
[8] X. Gourdon, The 1013 first zeros of the Riemann Zeta Function, and zeros computation at very large height, Oct. 24, 2004, http://numbers.computation.free.fr/Constants/ Miscellaneous/zetazeros1e13-1e24.pdf.
[9] G. H. Hardy, Sur les zéros de la fonction ζ(s) de Riemann, C. R. Acad. Sci. Paris 158, 1012–1014 (1914).
[10] A.E. Ingham, On two conjectures in the theory of numbers, Amer. J. Math. 64, 313–319 (1942).
[11] A.Y. Khinchin, Continued Fractions, Dover Publications, New York, 1997.
[12] N. Levinson, More than one third of zeros of Riemann’s zeta-function are on σ = 1/2, Advances in Math. 13, 383–436 (1974).
[13] A.M. Odlyzko, The 1020-th zero of the Riemann zeta function and 175 million of its neighbors, 1992 revision of 1989 manuscript.
[14] A.M. Odlyzko, The 1021-st zero of the Riemann zeta function, Nov. 1998 note for the informal proceedings of the Sept. 1998 conference on the zeta function at the Edwin Schroedinger Institute in Vienna.
[15] A.M. Odlyzko, Tables of zeros of the Riemann zeta function, http://www.dtc.umn.edu/ odlyzko/zeta_tables/index.html.
[16] A.M. Odlyzko, Primes, quantum chaos, and computers, Number Theory, National Research Council, pages 35–46, 1990.
[17] A.M. Odlyzko, The 1022-nd zero of the Riemann zeta function, In M. van Frankenhuysen, M.L. Lapidus, editors, Dynamical, Spectral, and Arithmetic Zeta Functions, number 290 in Amer. Math. Soc., Contemporary Math. series, pages 139–144, 2001.
[18] A.M. Odlyzko, H.J.J. te Riele, Disproof of the Mertens Conjecture, J. Reine Angew. Math. 357, 138–160 (1985).
[19] B. Riemann, Ueber die anzahl der primzahlen unter einer gegebenen grösse, Monatsberichte der Berliner Akademie, pages 671–680, November 1859, english translation available at http://www.maths.tcd.ie/pub/Hist Math/People/Riemann.
[20] C. Ryll-Nardzewski, On the ergodic theorems II (Ergodic theory of continued fractions), Studia Mathematica 12, 74–79 (1951).
[21] A. Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad. Oslo I. 10 59, (1942).
[22] C.L. Siegel, Transcendental Numbers, Princeton University Press, 1949.
[23] The PARI Group, Bordeaux, PARI/GP, version 2.3.2, 2008, available from http://pari.math.u-bordeaux.fr/.
[24] E.W. Weisstein, CRC Concise Encyclopedia of Mathematics, Chapman & Hall/CRC, 2009.

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST