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Abstract: We have used the first 2600 nontrivial zeros γl of the Riemann zeta function calculated with 1000 digits accuracy
and developed them into the continued fractions. We calculated the geometrical means of the denominators of these con-
tinued fractions and for all cases we get values close to the Khinchin’s constant, which suggests that γl are irrational. Next
we have calculated the n-th square roots of the denominators Qn of the convergents of the continued fractions obtaining
values close to the Khinchin-Lévy constant, again supporting the common opinion that γl are irrational.
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I. INTRODUCTION

Bernhard G.F. Riemann has shown [19] that both the sum
and the product of the Euler identity which are convergent
only for <[s] > 1:

ζ(s) :=

∞∑
n=1
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)−1
,

s = σ + it

(1)

can be analytically continued to the whole complex plane
except s = 1 by means of the following contour integral:
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Γ(−s)

2πi

∫
P

(−x)s

ex − 1

dx

x
(2)

where the integration is performed along the path P
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Till now dozens of integrals and series representing the ζ(s)
function are known, for collection of such formulas see for
example the entry Riemann Zeta Function in [24] and refer-
ences cited therein.

The ζ(s) function has trivial zeros at even negative inte-
gers: −2,−4,−6, . . . and infinity of nontrivial complex ze-
ros ρl = βl + iγl in the critical strip: βl ∈ (0, 1), γl ∈ R.
The Riemann Hypothesis (RH) asserts that βl = 1

2 for all l
– i.e. all zeros lie on the critical line <(s) = 1

2 . Presently it
is added that these nontrivial zeros are simple: ζ ′(ρl) 6= 0 –
many explicit formulas of the number theory contain ζ ′(ρl)
in the denominators.
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In 1914 G. H. Hardy [9] proved that infinitely many ze-
ros of ζ(s) lie on the critical line. In 1942, A. Selberg [21]
in 1942 showed that at least a (small) positive proportion
of the zeros of ζ(s) lie on the critical line. The first quan-
titative result was obtained in 1974 by N. Levinson [12]
who showed that at least one-third of the zeros lie on the
critical line. In 1989, B. Conrey [2] improved this to two-
fifths and quite recently with collaborators [1] to over 41%.
It was checked computationally [8] that the 1013 first zeros
of the Riemann Zeta function fulfill the condition βl = 1

2 .
A. Odlyzko checked that RH is not violated in different in-
tervals around 1020 [13], 1021 [14], 1022 [17], see also [8]
for the two billion zeros from the zero 1024.

There is little hope to obtain an analytical formulas for
the imaginary parts γl of the nontrivial zeros of ζ(s) but the
common opinion is that they are irrational and perhaps even
transcendental. In [16] Odlyzko writes: Nothing is known
about the γn, but they are thought likely to be transcendental
numbers, algebraically independent of any reasonable num-
bers that have ever been considered. The assumed existence
of some hypothetical linear relations between γl with integer
coefficients appeared for the first time in the paper of A.E.
Ingham [10] in connection with the Mertens conjecture. This
conjecture specifies the growth of the functionM(x) defined
by

M(x) =
∑
n≤x

µ(n), (3)

where µ(n) is the Möbius function

µ(n) =

 1 for n = 1
0 when p2|n
(−1)r when n = p1p2 . . . pr

(4)

The Mertens conjecture asserts that

|M(x)| < x
1
2 . (5)

From this inequality the RH would follow. A. E. Ingham
in [10] showed that the validity of the Merten’s conjecture re-
quires that the imaginary parts of the nontrivial zeros should
fulfill the relations of the form:

N∑
l=1

clγl = 0, (6)

where cl are integers not all equal to zero. This result raised
the doubts in the inequality (5) and indeed in 1985 A.
Odlyzko and H. te Riele [18] disproved the Merten’s con-
jecture.

In [4, Th.2] P.D.T.A. Elliott assuming RH proved that
the sequence αγl, (l = 1, 2, . . .) is uniformly distributed
modulo 1 for every real nonzero α. Further results about the
distribution of αγl were later obtained in [7] and [6].

In this paper we are going to exploit two facts about the
continued fractions: the existence of the Khinchin constant
and Khinchin-Lévy constant, see e.g. [5, §1.8], to support
the irrationality of γl. Let

r =[a0(r); a1(r), a2(r), a3(r), . . .] =

=a0(r) +
1

a1(r) +
1

a2(r) +
1

a3(r) +
. . .

(7)

be the continued fraction expansion of the real number r,
where a0(r) is an integer and all ak(r) with k ≥ 1 are pos-
itive integers. Khinchin has proved [11], see also [20], that
limits of geometrical means of an(r) are the same for almost
all real r:

lim
n→∞

(
a1(r) . . . an(r)

) 1
n =

=

∞∏
m=1

{
1 +

1

m(m+ 2)

}log2m

≡

≡K0 ≈ 2.685452001 . . . .

(8)

The Lebesgue measure of (all) the exceptions is zero and
include rational numbers, quadratic irrationals and some ir-
rational numbers too, like for example the Euler constant
e = 2.7182818285 . . . for which the limit (8) is infinity.

The constant K0 is called the Khinchin constant, see
e.g. [5, §1.8]. If the quantities

K(r;n) =
(
a1(r)a2(r) . . . an(r)

) 1
n (9)

for a given number r are close to K0 we can regard it as an
indication that r is irrational.

Let the rational Pn/Qn be the n-th partial convergent of
the continued fraction:

Pn
Qn

= [a0; a1, a2, a3, . . . , an]. (10)

For almost all real numbers r the denominators of the finite
continued fraction approximations fulfill:

lim
n→∞

(
Qn(r)

)1/n
= eπ

2/12 ln 2 ≡

≡L0 = 3.275822918721811 . . .
(11)

where L0 is called the Khinchin-Lévy’s constant [5, §1.8].
Again the set of exceptions to the above limit is of the
Lebesgue measure zero and it includes rational numbers,
quadratic irrational etc.

Let us remind that it is well known [22, p. 71] that the
zeros of the Bessel functions Kλ(x) and Jλ(x) are transcen-
dental. But ζ(s) does not belong to the class of E–functions
considered by Siegel and his proof can not be applied to the
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zeta function. The proofs of Siegel are based on the differen-
tial equations obeyed by these functions but ζ(s) does not
fulfill any differential equation. Trigonometrical functions
have zeros which are transcendental, logarithms have just
one integer zero. Is ζ(s) an example of a function with both
integer and transcendental zeros?

Fig. 1. The distribution of computed Kl(n(l))

Fig. 2. The number of sign changes for each l, i.e. the number of
such m that (Kl(m + 1) − K0)(Kl(m) − K0) < 0 (the initial
transient values of m were skipped – sign changes were detected

for m = 100, 101, . . . n(l))

II. THE COMPUTER EXPERIMENTS

First 100 zeros γl of ζ(s) accurate to over 1000 deci-
mal places we have taken from [15]. Next 2500 zeros of
ζ(s) with precision of 1000 digits were calculated using
the built in Mathematica procedure ZetaZero[m]. We

have checked using PARI/GP [23] that these zeros were ac-
curate within at least 996 places in the sense that in the
worst case |ζ(ρl)| < 10−996, l = 1, 2, . . . , 2600. PARI
has built in function contfrac(r, {nmax}) which cre-
ates the row vector a(r) whose components are the denom-
inators an(r) of the continued fraction expansion of r, i.e.
a = [a0(r); a1(r), . . . , an(r)] means that

r ≈ a0(r) +
1

a1(r) +
1

a2(r) +
1

. . .
1

an(r)

(12)

The parameter nmax limits the number of terms anmax(r);
if it is omitted the expansion stops with a declared precision
of representation of real numbers at the last significant partial
quotient: the values of the convergents pk(r)/qk(r) approxi-
mate the value of r with accuracy at least 1/q2k [11, Theorem
9, p.9]: ∣∣∣∣r − pk

qk

∣∣∣∣ < 1

q2k
, (13)

hence when 1/q2k is smaller than the accuracy of the num-
ber r the process stops. Using (simply) the trial and error
approach we have determined that the PARI precision set to
\p 2200 is sufficient in the sense that scripts with larger
precision generated exactly the same results: the rows a(γl)
obtained with accuracy 2200 digits were the same for all l
as those obtained for accuracy 2600 and the continued frac-
tions accuracy set to 2100 digits gave different denominators
an(γl)

With the precision set to 2200 digits we have expanded
each γl, l = 1, 2, . . . 2600 with 1000 accurate decimal digits
value into its the continued fractions

γl
.
= [a0(l); a1(l), a2(l), a3(l), . . . , an(l)(l)] ≡ a(l) (14)

without specifying the parameter nmax, thus the length of
the vector a(l) depended on γl and it turns out that the num-
ber of denominators was contained between 1788 and 2072.
The value of the product a1a2 . . . an(l) was typically of the
order 10800 − 10870. Next for each l we have calculated the
geometrical means:

Kl(n(l)) =

n(l)∏
k=1

ak(l)

1/n(l)

. (15)

The results are presented in the Fig.1. Values of Kl(n(l))
are scattered around the red line representing K0. To gain
some insight into the rate of convergence of Kl(n(l)) we
have plotted in the Fig. 2 the number of sign changes SK(l)
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of Kl(m)−K0 for each l when m = 100, 101, . . . n(l), i.e.

SK(l) = number of such m that

(Kl(m+ 1)−K0)(Kl(m)−K0) < 0.
(16)

The largest SK(l) was 122 and it occurred for the zero γ194
and for 381 zeros there were no sign changes at all. In the
Fig. 3 we present plots of Kl(m) as a function of m for a
few zeros γl.

Fig. 3. For γ166 there was no sign change of the difference
K166(m) − K0. For γ194 there were 122 sign changes of the dif-
ferenceK194(m)−K0 – it was the largest number of sign changes
among all zeros. For γ1434 there were 63 sign changes of the dif-

ference K1434(m)−K0

Fig. 4. The distribution of computed Ll(n(l))

Let the rational pn(l)(γl)/qn(l)(γl) be the n-th partial
convergent of the continued fractions (14):

pn(l)(γl)

qn(l)(γl)
= a(l). (17)

For each zero γl we have calculated the partial convergents
pn(l)(γl)/qn(l)(γl). Next from these denominators qn(l)(γl)
we have calculated the quantities Ll(n(l)):

Ll(n(l)) =
(
qn(l)

)1/n(l)
, l = 1, 2, . . . , 2600 (18)

The obtained values of Ll(n(l)) are presented in the Fig.4.
These values scatter around the red line representing the
Khinchin-Lévy’s constant L0. As in the case of Kl(m)
Fig.5 presents the number of sign changes of the difference
Ll(m)−L0 as a function of the index m of the denominator
of the m-th convergent pm/qm

SL(l) = number of such m that

(Ll(m+ 1)− L0)(Ll(m)− L0) < 0.
(19)

The maximal number of sign changes was 136 and appeared
for the zero γ1389 and there were 396 zeros without sign
changes.

In Fig. 6 we have plotted the “running” absolute differ-
ence between Kl(m) and K0 averaged over all 2600 zeros:

AK(m) =
1

2600

2600∑
l=1

∣∣Kl(m)−K0

∣∣,
m = 100, 101, . . . 1788

(20)

and the similar average for the difference between Ll(m)
and L0:

AL(m) =
1

2600

2600∑
l=1

∣∣Ll(m)− L0

∣∣,
m = 100, 101, . . . 1788.

(21)

These two averages tend to zero very rapidly. Although it
does not prove nothing, the fact that the curves representing
AK(m) and AL(m) almost coincide is very convincing. In
the inset the plot on double logarithmic scale reveals that
both AL(m) and AK(m) decrease like CK,L/

√
m where

CK = 2.3868 . . . and CL = 2.4473 . . .. It would be interest-
ing to offer the conjecture that the power of the dependencies
evolves to be m−(1/2+ε) with ε tending to zero for large m.

III. CONCLUDING REMARKS

There are generalizations of above quantitiesK(n) given
by (9). It can be shown that the following s-mean values of
the denominators ak(r) of the continued fraction for a real
number r:

M(n, s; r) =

(
1

n

n∑
k=1

(
ak(r)

)s)1/s

(22)
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are divergent for s ≥ 1 and convergent for s < 1 for almost
all real r [5, §1.8]. It can be shown that for s < 1

lim
n→∞

M(n, s; r) =

=

( ∞∑
k=1

−ks log2

(
1− 1

(k + 1)2

))1/s

≡ Ks

(23)

where M(n, s; r) for almost all r are the same. The quanti-
ties (22) can be computed for imaginary parts of nontrivial
zeta zeros M(n, s; γl) and compared with values of Ks but
we leave it for further investigation.

Fig. 5. The number of sign changes for each l. i.e. the number of
such m that (Ll(m+1)−L0)(Ll(m)−L0) < 0 (the initial tran-
sient values of m were skipped – sign changes were detected for

m = 100, 101, . . . n(l))

Fig. 6. The running average differences AK(m) (eq. (20)) and
AL(m) (eq. (21)) plotted for m = 100, 101, . . . 1788). In the inset
the same curves are plotted on the double logarithmic scale (in red
and black) together with fits obtained by the least square method (in
blue and green). The equations of the fits are 2.3868/m0.5019 for
AK(m) (green line) and 2.4473/m0.5028 for AL(m) (blue line)

The continued fractions were used in the past in Apéry‘s
proof of irrationality of ζ(3). In the paper [3] values of ζ(n)
for all n ≥ 2 were expressed in terms of rapidly converg-
ing continued fractions. These results were analytical, but in
case of the nontrivial zeros of the ζ(s) function we are left
only with the computer experiments. The results reported in
this paper suggest that they are irrational.
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