• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 28 (2) 2022, 41–46

Thermodynamic Entropy from Sadi Carnot’s Cycle using Gauss’ and Doll’s-Tensor Molecular Dynamics

Hoover William G. *, Hoover Carol G.

Ruby Valley Research Institute
601 Highway Contract 60
Ruby Valley, Nevada 89833, USA

∗E-mail: hooverwilliam@yahoo.com

Received:

Received: 29 January 2022; in final form: 25 February 2022; accepted: 26 February 2022; published online: 8 March 2022

DOI:   10.12921/cmst.2022.0000003

Abstract:

Carnot’s four-part ideal-gas cycle includes both isothermal and adiabatic expansions and compressions. Analyzing this cycle provides the fundamental basis for statistical thermodynamics. We explore the cycle here from a pedagogical view in order to promote understanding of the macroscopic thermodynamic entropy, the state function associated with thermal energy changes. From the alternative microscopic viewpoint the Hamiltonian H(q, p) is the energy and entropy is the (logarithm of the) phase-space volume Ω associated with a macroscopic state. We apply two novel forms of Hamiltonian mechanics to Carnot’s Cycle: (1) Gauss’ isokinetic mechanics for the isothermal segments and (2) Doll’s Tensor mechanics for the isentropic adiabatic segments. We explore the equivalence of the microscopic and macroscopic views of Carnot’s cycle for simple fluids here, beginning with the ideal Knudsen gas and extending the analysis to a prototypical simple fluid.

Key words:

Carnot cycle, entropy, nonequilibrium molecular dynamics, reversible processes, states

References:

[1] W.G. Hoover, Sec. 1.9: Gauss’ Principle and Nonholonomic Constraints and Sec. 2.5: Second Law of Thermodynamics, [In:] Computational Statistical Mechanics, Elsevier, New York (1991). The latter Section details the Carnot Cycle from the macroscopic viewpoint.

[2] W.G. Hoover, A.J.C. Ladd, R.B. Hickman, B.L. Holian, Bulk Viscosity via Nonequilibrium and Equilibrium Molecular Dynamics, Phys. Rev. A 21, 1756–1760 (1980).

[3] H.A. Posch, W.G. Hoover, F.J. Vesely, Canonical Dynamics of the Nosé Oscillator: Stability, Order, and Chaos, Phys. Rev. A 33, 4253–4265 (1986).

[4]  D.J.   Evans,   W.G.   Hoover,   B.H.   Failor,   B.   Moran, A.J.C. Ladd, Nonequilibrium Molecular Dynamics via Gauss’ Principle of Least Constraint, Phys. Rev. A 28, 1016–1021 (1983).

[5] W.G. Hoover, H.A. Posch, Shear Viscosity via Global Control of Spatiotemporal Chaos in Two-Dimensional isoenergetic Dense Fluids, Phys. Rev. E 51, 273–279 (1995).

[6]  D.M. Gass, Enskog Theory for a Rigid Disk Fluid, J. Chem. Phys. 54, 1898–1902 (1971).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_28_2_2022_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST