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Abstract: Carnot’s four-part ideal-gas cycle includes both isothermal and adiabatic expansions and compressions. Analyz-
ing this cycle provides the fundamental basis for statistical thermodynamics. We explore the cycle here from a pedagogical
view in order to promote understanding of the macroscopic thermodynamic entropy, the state function associated with ther-
mal energy changes. From the alternative microscopic viewpoint the Hamiltonian H(q, p) is the energy and entropy is the
(logarithm of the) phase-space volume Ω associated with a macroscopic state. We apply two novel forms of Hamiltonian
mechanics to Carnot’s Cycle: (1) Gauss’ isokinetic mechanics for the isothermal segments and (2) Doll’s Tensor mechanics
for the isentropic adiabatic segments. We explore the equivalence of the microscopic and macroscopic views of Carnot’s
cycle for simple fluids here, beginning with the ideal Knudsen gas and extending the analysis to a prototypical simple fluid.
Key words: Carnot cycle, entropy, reversible processes, states, nonequilibrium molecular dynamics

I. From Phase Space
to Equilibrium Thermodynamics

Boltzmann and Gibbs showed that macroscopic thermo-
dynamics, that set of mechanical and thermal relations link-
ing heat, work, temperature, energy, pressure, and volume, is
a straightforward consequence of atomistic models of mat-
ter. We strengthen that connection here using two relatively
recent versions of Hamiltonian mechanics. Gauss’ Princi-
ple of Least Constraint [applied to the kinetic energy] is
the first. It provides a deterministic and time-reversible ba-
sis in Hamiltonian mechanics for isothermal simulations [1].
Doll’s Tensor [2] is the second. It incorporates the macro-
scopic volumetric strain rate, (V̇ /V ) = (ẋ/x) + (ẏ/y) =
= 2ϵ̇, necessary to simulating mechanical work with adia-
batic molecular dynamics. These two twentieth-century de-
velopments strengthen and illuminate the nineteenth-century
connection between microscopic atomistic particle models

and macroscopic thermodynamics based instead on empiri-
cal constitutive equations of state. Adding the microscopic
kinetic-theory notions of ideal-gas thermometry to macro-
scopic thermodynamic notions of temperature and entropy
through Gauss-Principle isothermal and Doll’s-Tensor adi-
abatic deformations provides a straightforward atomistic
derivation of macroscopic thermodynamics!

For simple fluids macroscopic equilibrium thermody-
namics describes two different kinds of energy changes,
dE: (1) heat taken in, dQ, and (2) mechanical work done,
dW . For a “reversible” series of equilibrium states the first
and second laws of thermodynamics take the form: dE =
= dQ − dW = TdS − PdV. Both energy E and entropy
S are equilibrium “state functions” independent of the path
taken to reach that state.

Among the concepts connecting the atomistic and
thermodynamic descriptions entropy is relatively exotic.
Two usual pictures representing entropy are respectively
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(1) the many-dimensional phase-space volume consistent
with a system’s longtime trajectory, and (2) the cumula-
tive total of heat divided by temperature on a longtime re-
versible path from some agreed upon standard state. Unlike
energy, pressure, and temperature, knowing the detailed mi-
croscopic state (coordinates and momenta) is not enough to
guess the entropy. The anthropomorphic nature of entropy
requires path-dependent details, either past history or future
predictions. The simplest route to entropy for a simple fluid
begins with Carnot’s thought experiment coupling the fluid
to an ideal gas constrained to undergo macroscopic changes
in temperature and volume.

Accordingly, we describe Carnot’s four-part ideal-gas
cycle and use that thought experiment construction to de-
fine and characacterize entropy. This is a traditional textbook
path [1]. To it we add illustrative microscopic simulations of
such cycles for both the ideal gas and an atomistic dense
fluid. The simulations use both isothermal and adiabatic ex-
tensions of Hamiltonian molecular dynamics. For simplicity
we study two-dimensional fluid models, both microscopic
and macroscopic, throughout.

The Carnot Cycle itself describes a continuous reversible
path of equilibrium states: two expansions and two compres-
sions. The example illustrated in Figs. 1 and 2 is calculated
for a two-dimensional monatomic classical ideal gas with the
conventional thermal and mechanical equations of state:

PV = NkT = E =

N∑
[ p2x + p2y ]/(2m)

[Two−Dimensional Ideal Gas].

Fig. 1. Sadi Carnot’s thermodynamic cycle composed (clockwise
from top left) of two twofold expansions, the first isothermal and
shown in red, with T = 1 and 1/2 < V < 1. The second
expansion, shown black, is adiabatic (no heat transferred) with
1 < V < 2. The expansions are followed by two twofold com-
pressions, the first isothermal and shown in blue with T = 1/2.
The second and last adiabatic compression returns the ideal gas to
the initial state of the cycle, (P, V, T ) = (2, 1/2, 1). The net work
done and heat taken in correspond to the area enclosed by the cy-
cle in the left plot. The right plot illustrates the powerlaw forms
of the ideal-gas mechanical and thermal equations of state. Notice
that the parallel lines show that the isothermal entropy changes,
± ln(Vhot/Vcold) have equal magnitudes so that

∮
(dQ/T ) van-

ishes. As half of the “hot”-reservoir heat taken in is discharged
to the “cold” reservoir at the lower temperature of (1/2), the “effi-
ciency” of this demonstation cycle is “work done”/“heat in” = 50%

Fig. 2. Sadi Carnot’s thermodynamic cycle connects two “hot”
states (at the top, with temperature 1) and two “cold” states (at the
bottom, with temperature 1/2). The vertical adiabatic processes in-
clude no heat transfer so that the two isokinetic horizontal pro-
cesses, with (∆Q/T ) = ±dS give a net entropy change of zero,
showing that entropy is a state function. Coupling the isothermal
portions of the reversed cycle to a general fluid leads to the same
conclusion. So long as the entire cycle is “reversible” the net en-
tropy change vanishes:

∮
(dQ/T ) = 0. Thus entropy is a state

function for a general fluid model

The specific equations describing the four-part cycle [1] in
the figures shown here connect four sets of (P, V ) states:

PV = 1; PV 2 = 1; PV = 1/2; PV 2 = 1/2.

Here the Volume V varies from 1/2 to 2 and back in the fol-
lowing way:

(2, 1/2)
PV=1

−−− → (1, 1)
PV 2=1

−−− →

→ (1/4, 2)
PV=1/2
−−− → (1/2, 1)

PV 2=1/2
−−− → (2, 1/2).

These two-dimensional illustrations are adequate and ideally
suited to the clarification of mechanical and thermodynamic
concepts.

This specific cycle illustrates the state-function nature
of entropy S defined by the integral of the heat transfer,
weighted with the inverse temperature: ∆S ≡

∫
(dQ/T ).

The second and fourth adiabatic parts of Carnot’s cycle are
free of heat transfer so that we need only consider the first
and third in entropy calculations. For an ideal gas there is no
potential energy so that these isotherms are also isoenergetic:

0 ≡ dE = dQ− dW = TdS − PdV −→
−→ dQ = dW = TdS = PdV = NkT (dV/V ) −→

−→ (dQ/T ) = dS = Nkd lnV.



Thermodynamic Entropy from Sadi Carnot’s Cycle using Gauss’ and Doll’s-Tensor Molecular Dynamics 43

The power-law nature of ideal-gas thermodynamics shows
that the cyclic integral of (dQ/T ) vanishes for this and
any other Carnot Cycle. An arbitrary ideal-gas Carnot cy-
cle can be subdivided into a grid of infinitesimal isother-
mal/adiabatic dP × dV clockwise cycles. Then all the in-
ternal cycle integrals cancel their neighbors’ contributions.
The only exceptions are those perimeter integrals forming
the boundary of the larger arbitrary cycle.

Provided that the ideal-gas heat transfers are divided by
their temperatures this same conclusion holds for a general
fluid matching the thermal heat transfers of the ideal gas.
The match is as perfect as is the cycle reversible. Thus the
cyclic integrals of (dQ/T ) vanish both for the ideal gas and
for a general fluid, showing that the entropy S is a state func-
tion for both these materials.

II. Carnot Cycle Simulation
with Molecular Dynamics

In March 1980 Hoover, Ladd, Hickman, and Holian de-
scribed a Doll’s Tensor Hamiltonian incorporating either
a shear or a volumetric strain rate conforming to the use
of periodic boundary conditions [2]. See the corresponding
snapshots in Fig. 3. The volume strain shown at the left dou-
bles the area. The shear strain at the right imposes a dis-
placement in the x direction varying linearly in y. Volumetric
strain is present in all four segments of the Carnot Cycle [2].
If the four deformations proceed at constant rates notice that
the cycle necessarily includes four points where velocity is
discontinuous.

The Hamiltonian for the Carnot Cycle problem has the
following form:

H(q, p) = Φ(q) +K(p) + ϵ̇
∑
i

(xipxi
+ yipyi

)

[Doll′s Tensor].

Here ϵ̇ is the macroscopic strain rate,

ϵ̇ = (dux/dx) = (duy/dy) = (1/2)(V̇ /V ).

For simplicity we choose both Boltzmann’s constant k and
the particle mass m equal to unity throughout. The Doll’s
Tensor idea is well suited to simulating Carnot’s Cycle, both
the adiabatic and the isothermal segments. Let us detail the
equations of motion.

II. 1. Adiabatic Equations of Motion for Carnot’s Cycle
For each of the N particles in a central L × L periodic

cell centered on the origin, |x| and |y| < (L/2), the Doll’s
Tensor adiabatic equations of motion incorporate the volu-
metric strain rate 2ϵ̇:

{ẋi = pxi + ϵ̇xi ; ṗxi = Fxi − ϵ̇pxi ,

ẏi = pyi + ϵ̇yi ; ṗyi = Fyi − ϵ̇pyi}.

The isotropic pressure P is given by the Virial Theorem:

PV =
∑
i

(p2xi
+ p2yi

)/2 +
∑
i<j

(1/2)rij · Fij ,

with

rij = ri − rj ; Fij = −∇iϕ(|ri − rj |).

The first sum above is over particles and the second is over
particle pairs. The Virial Theorem pressure gives the instan-
taneous rate of energy change:

Ė = Φ̇ + K̇ ≡ PV̇ = −2ϵ̇PV.

These motion equations are ideally suited to the adiabatic
deformations in Carnot’s cycle, with ϵ̇ positive for the two
expansions and negative for the subsequent compressions.
The isothermal constraint could be added by the smooth ther-
mostatting provided by Nosé-Hoover mechanics [3] or by
velocity scaling at the end of each timestep:

{ṗxi
=Fxi

− ζ pxi
; ṗyi

=Fyi
− ζ pyi

;

ζ̇=[(K/N)− T ]/τ2}.

Trials, with orders of magnitude variation in the Nosé-
Hoover relaxation time τ , weren’t particularly “useful”, in
terms of reducing the fluctuations in pressure and temper-
ature in the course of the cycle. Instead, we successfully
used both “Gaussian Mechanics” [4] and velocity rescaling.
Both these algorithms make temperature a constant of the
motion. With that choice a 576-particle system with 2304
motion equations is a convenient size for numerical work.
We discuss computational applications of the underlying
motion equations in the following Sections.

Fig. 3. The central square, with |x| < L/2 and |y| < L/2 is shown
in white. The initial configuration, in the middle, is surrounded by
eight periodic images. Expansion, which typically leads to cooling,
is indicated at the left and shear, which leads to minor heating, is
shown to the right. These boundary conditions lead naturally to the

nearest-image convention for computing the forces:
if(xij < -L/2) xij = xij + L;
if(xij > +L/2) xij = xij - L.

The Carnot cycle of Fig. 1 is composed entirely of volumetric
strains, with ϵxx = ϵyy
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II. 2. Isothermal Equations of Motion
for Carnot’s Cycle

Adding instantaneous control of the kinetic energy∑
(p2x + p2y)/2 augments the adiabatic motion equations to

include the friction coefficient ζ:

{ẋi = pxi
+ ϵ̇xi ; ṗxi

= Fxi
− ϵ̇pxi

− ζpx ,

ẏi = pyi
+ ϵ̇yi ; ṗyi

= Fyi
− ϵ̇pyi

− ζpy}.

Multiplying the motion equations to compute the kinetic en-
ergy K constraint,

∑
(pxṗx+pyṗy) ≡ 0 provides an explicit

equation for the friction coefficient and the resultant motion
equations for the isothermal segments of the cycle:

ζ =
∑
i

Fi · pi/(2K) ; {q̇ = p+ ϵ̇q ; ṗ = F − ζp}.

Numerical exploration of the adiabatic and isothermal
motion equations shows that both approaches are well-
behaved, stable, and relatively close to our expectations
based on the thought-experiment version of the Carnot cy-
cle. A useful modification of the isothermal motion equa-
tions instead adds a velocity rescaling operation, pi → pi ×
×
√
2NT/

∑
p2, at the conclusion of each adiabatic

timestep. Accumulating the kinetic energy changes due to
these rescalings provides the computational version of heat
gain or loss dQ. These energy increments are necessary
in evaluating the efficiency and the dissipation associated
with the cycles. We describe our computational experience
with the Carnot-Cycle molecular dynamics next.

III. Computational Carnot Cycles
for a Knudsen Gas

A practical approach to the nonequilibrium molecular
dynamics of the Carnot Cycle is to begin with a conventional
four-body computer program incorporating static periodic
boundary conditions. Once that isoenergetic programming is
successful it is straightforward to introduce dynamic bound-
aries and to extend Knudsen-gas and dense-fluid codes to
larger systems for which fluctuations are smaller. We chose
N = 242 = 576 to illustrate the present work, large enough
that the fluctuations are small, but with the system still small
enough that laptop problems can be completed in a few
hours’ time. Equilibrium simulations with zero strain rate
suggested a fourth-order Runge-Kutta timestep dt = 0.001
with kinetic temperatures of 0.5 and 1.0 for the “cold”
and “hot” isothermal segments of the cycle. The minimum
and maximum densities imposed on the cycles were (1/2)
and (2), matching our 1991 textbook example problem [1].

Fig. 4 shows two views of a (collisionless) Knudsen-
Gas cycle. The lack of collisions would seem to suggest,
wrongly, that the initial velocity distribution remains un-
changed. The adiabatic coordinate changes are paired with

momentum changes keeping the phase volume dqdp fixed.
The twofold density increases and decreases correspond
to twofold increases and decreases in temperature. In the
isothermal segments the coordinates expand or contract but
the momenta are unchanged. For isothermal processes the ki-
netic temperature ⟨p2x⟩ = ⟨p2y⟩ is constant, imposed with the
reversible friction ζ or by velocity rescaling. The discontin-
uous velocities when the four segments begin and end cause
no particular computational difficulties.

For the adiabatic segments the Knudsen gas equations of
motion,

{q̇ = p+ ϵ̇q ; ṗ = −ϵ̇p},

can be integrated analytically (though Runge-Kutta integra-
tion is both faster and simpler). Each of the Knudsen-gas
momenta varies exponentially in time in the adiabatic seg-
ments:

p(t) = p(0)e−ϵ̇t = p(0)e−ϵ ,

where ϵ is the strain and ϵ̇ is the strain rate, for simplicity
chosen constant for each segment of the cycle. In the second
segment of the cycle, the adiabatic expansion phase, the vol-
ume is doubled and the final one-dimensional strain is

√
2.

During the expansion the x and y components of each ve-
locity are reduced by the same factor. The initial Gaussian,
with kinetic temperature ⟨p2x⟩ = ⟨p2y⟩ = 1, is reduced in am-
plitude. This results in the final cooler kinetic temperature
⟨p2x⟩ = ⟨p2y⟩ = (1/2). The collisionless molecular dynam-
ics reproduces the thought-experiment cycle of Fig. 1 nearly
perfectly, as is shown in Fig. 4.

Analysis of the cycle shows that half the heat taken in
at T = 1 is given to the cold reservoir at T = (1/2) with
the other half converted to work. Each clockwise thermody-
namic cycle performs net work equal to ln(

√
2) per particle.

Fig. 4. Knudsen Gas Carnot Cycle with 576 ideal-gas particles.
The initial distribution of momenta, chosen Gaussian, remains
Gaussian throughout as the temperature varies from 0.5 to 1.0.
The four segments of the cycle all correspond to twofold changes
in density. The heat taken in at T = 1,

∫ 1

1/2
d lnV , ln(2) per parti-

cle, is twice that given off at T = (1/2), with the difference equal
to the work done, 288× ln(2)/2 = 199.6, corresponding with the

thought experiment of the theoretical cycle of Fig. 1
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IV. Simulating Carnot Cycles
for a Soft-Disk Dense Fluid

For a “realistic” dense-fluid model we use a simple
purely-repulsive pair potential with a finite range of unity:
ϕ(r < 1) = (10/π)(1 − r)3 −→

∫ 1

0
2πrϕ(r) ≡ 1. Steady-

shear simulations with a similar short-ranged repulsive po-
tential, 100(1 − r2)4 suggest that size and strain rate de-
pendences act to reduce the magnitude of the shear viscos-
ity by no more than a few percent [5]. Because Carnot-
cycle deformations are volumetric, at constant shape, dis-
sipation occurs in the form of “bulk viscosity” rather than
shear. In 1971 David Gass estimated the bulk viscosity for
hard disks [6]. Setting the soft-disk potential equal to a ki-
netic temperature of unity gives an effective diameter of
1 − 3

√
(π/10) = 0.3202 from which Gass’ bulk viscosity

is roughly 0.04.
We choose the same temperatures, 1 and (1/2), and the

same density range, (1/2) < ρ = (N/V ) < 2 as in the
Knudsen Gas example. Fig. 5 shows the resulting cycles for
times of 1, 2, 4, and 8 for each of the four segments. Segment
times of 256 or 512 are reasonable problems taking only
a few hours of laptop time. The longer slower problems show
much smaller pressure fluctuations than the faster problems
of Fig. 5. The initial value, PV/N near 1.8, necessarily ex-
ceeds the ideal-gas value of unity. Likewise, the minimum,
around 0.6, exceeds the ideal-gas value T = (1/2).

Fig. 5. Soft-disk Carnot Cycle with 576 particles. The pair poten-
tial is ϕ(r) = (10/π)(1 − r)3. In the cycle 0.5 < T < 1 and
(1/2) < ρ < 2. The work per particle done in the cycle is the
enclosed area, roughly 0.4. The total work, larger by a factor of
N = 576, increases from about 200 to 234 as the cycle time tCC is
increased from 4 to 128. The efficiency of the slowest cycle, with

tCC = 512, is 98% of the ideal 50%

The larger slower problems are suitable for thermody-
namic analyses of fluctuations. The isokinetic friction coef-
ficient, equivalent to the velocity rescaling factor:

ζ =

∑
i Fi · pi∑

i p
2
i

,

describes the entropy change in thermostatted flows and ex-
hibits large fluctuations in small systems with rapid deforma-
tion. We experimented with dozens of combinations of strain
rate, timestep, system size and numbers of cycles. A useful
estimate of finite-system effects can be based on the series of
strain rates ϵ̇ = (1/2)n. Hydrodynamics suggests an entropy
production varying as the square of the strain rate, so that for
a fixed number of cycles the efficiency should show a loss
proportional to the strain rate.

For the series n = 1 to 5 we found efficiencies increas-
ing from 88% to 98% of the ideal. In the latter case the lost
work per cycle, about 5, should be of order 32(2/32)2NηV ,
corresponding to a bulk viscosity of order 0.05, close to the
hard-disk estimate based on Gass’ work. In all, the agree-
ment of the simulations with expectations is quite satisfac-
tory. The unaesthetic nature of the velocity discontinuities
can only be avoided by adding complexity to the analysis, al-
ready clouded by the relatively wide difference in the strain
rates.

Fig. 6. Entropy gained and lost, by “hot” and “cold” reservoirs re-
spectively in following the dense-fluid Carnot Cycle with periods
of 4 (on the right) and 8 (on the left). The numbers of cycles in
the averaging vary from 50 to 1000 (left) or 100 to 2000 (right)
with the shorter runs (purple) exhibiting larger fluctuations than the
longer ones (black). Precise averages require on the order of 100
cycles for 576 particles. The entropy lost by the hot reservoir ex-
ceeds that gained by the cold one. The efficiencies of the cycles
vary from 88% of the reversible ideal, for the shortest run, to 98%
for the longest. Simulations with dt = 0.01 are consistent with the

dt = 0.001 used here

V. Summary

In Gibbs’ and Boltzmann’s microscopic statistical me-
chanics entropy is related to the longtime occupation of
states in phase space, S(N,E, V ) = k lnΩ. In macro-
scopic thermodynamics entropy is related to the longtime
integrated, slow and reversible, uptake of heat divided by
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temperature, S(N,E, V ) =
∫ t

−∞(dQ/T ). Here we have ex-
plored these two very different views of entropy for two ma-
terial models, a Knudsen gas, with a collisionless Maxwell-
Boltzmann velocity distribution, and a simple fluid, with
a short-ranged purely-repulsive atomistic pair force. We have
introduced and used two different versions of nonequilib-
rium molecular dynamics to implement Carnot Cycles for
the two microscopic models.

The Carnot Cycle is fundamental to the connection of
phase volume Ω to integrated heat Q and the kinetic tem-
perature T . The cyclic conversion of heat to work cleanly
separates macroscopic isothermal and adiabatic volume
changes in an elegant way applicable to general fluid mod-
els. This cyclic connection of ideal-gas states to fluid states
through work and heat provides the simplest possible illus-
tration connecting the microscopic and macroscopic defini-
tions of entropy.

The Carnot Cycle is perfectly suited to two relatively
new versions of mechanics: (1) an isothermal mechanics
based on Gauss’ Principle of Least Constraint, where the ki-
netic temperature is a constrained variable; and (2) an adia-
batic mechanics, based on the Doll’s-Tensor Hamiltonian,

HDoll′s(q, p) = HEquilibrium(q, p) + ϵ̇
∑
i

qipi →

→ Ė = −PV̇ .

This Hamiltonian introduces adiabatic time-dependence
into the conservation of mechanical energy, dE/dt =
= −PdV/dt = −2ϵ̇PV through the macroscopic strain
rate ϵ̇.

Our implementation of the ideal-gas and simple-fluid
cycles illustrates the connection of atomistic dynamics to
macroscopic thermodynamics. We characterized the dissi-

pative heat for a series of strain rates and related it to bulk
viscosity estimates from kinetic theory.

The Carnot cycle is an ideal teaching tool for relating
thermodynamics to statistical mechanics. The models sug-
gest further research opportunities. In particular it is desir-
able to formulate cycles with continuous strainrates and to
further detail the microscopic bulk-viscosity mechanism un-
derlying these illustrations of the Second Law of Thermody-
namics.
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