• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 28 (2) 2022, 47–59

The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm

Maślanka Krzysztof 1, Koleżyński Andrzej 2

1 Polish Academy of Sciences
Institute for the History of Sciences
Nowy Świat 72, 00-330 Warsaw, Poland
E-mail: krzysiek2357@gmail.com

2 University of Science and Technology
Faculty of Materials Science and Ceramics
Mickiewicza 30, 30-059 Cracow, Poland
E-mail: kolezyn@agh.edu.pl

Received:

Received: 6 June 2022; revised: 13 June 2022; accepted: 15 June 2022; published online: 25 June 2022

DOI:   10.12921/cmst.2022.0000014

Abstract:

We present a simple but efficient method of calculating Stieltjes constants at a very high level of precision, up to about 80 000 significant digits. This method is based on the hypergeometric-like expansion for the Riemann zeta function presented by one of the authors in 1997 [19]. The crucial ingredient in this method is a sequence of high-precision numerical values of the Riemann zeta function computed in equally spaced real arguments, i.e. ζ(1 + ε), ζ(1 + 2ε), ζ(1 + 3ε), … where ε is some real parameter. (Practical choice of ε is described in the main text.) Such values of zeta may be readily obtained using the PARI/GP program, which is especially suitable for this.

Key words:

experimental mathematics, PARI/GP computer algebra system, Riemann zeta function, Stieltjes constants

References:

[1] PARI/GP version 2.14.0, 64-bit (2022), available from https://pari.math.u-bordeaux.fr/download.html.

[2] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, New York, Dover (1972).

[3] O.R. Ainsworth, L.W. Howell, The Generalized Euler-Mascheroni Constants, NASA Technical Paper 2264 (1984).

[4] O.R. Ainsworth, L.W. Howell, An Integral Representation of the Generalized Euler-Mascheroni Constants, NASA Technical Paper 2456 (1985).

[5] L. Báez-Duarte, On Maslanka’s Representation for the Riemann Zeta Function, International Journal of Mathematics and Mathematical Sciences 2010, 714147 (2010).

[6] L. Báez-Duarte, A New Necessary and Sufficient Condition for the Riemann Hypothesis (2003).

[7] I.V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations, arXiv:1401.3724v3 (2015).

[8] I.V. Blagouchine, Expansions of generalized Euler’s constants into the series of polynomials in π−2 and into the formal enveloping series with rational coefficients only, arXiv:1501.00740v4 (2016).

[9] I.V. Blagouchine, F. Johansson, Computing Stieltjes Constants Using Complex Integration, arXiv:1804.01679v3 (2018).

[10] M. Coffey, The Stieltjes constants, their relation to the ηj coefficients, and representation of the Hurwitz zeta function, arXiv:0706.0343v2 (2009).

[11] L. Euler. Variae observationes circa series infinitas, Commentarii academiae scientiarum Petropolitanae 9, 160–188 (1744).

[12] P. Flajolet, L. Vepstas, On Differences of Zeta Values, arXiv:math.CA/0611332v1 (2006).

[13] J. Franel, Short untitled announcement communicated by Ernesto Cesàro, L’Intermédiaire des mathematiciens 1, 153–154 (1895).

[14] C. Hermite, T.J. Stieltjes, Correspondance d’Hermite et de Stieltjes 1, (8 novembre 1882–22 juillet 1889) (1905).

[15] J.L.W.V. Jensen, Sur la fonction ζ(s) de Riemann, Comptes rendus hebdomadaires des séances de l’Académie des sciences, p. 1156.

[16] F. Johansson, Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numerical Algorithms 69, 253–270 (2014).

[17] J.B. Keiper, Power series expansions of Riemann’s ξ function, Mathematics of Computation 58, 765–765 (1992).

[18] R. Kreminski, Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants, Mathematics of Computation 72 (2002).

[19] K. Maślanka, The Beauty of Nothingness:  Essay  on  the Zeta Function of Riemann, Acta Cosmologica XXIII, 13–18 (1998); A hypergeometric-like Representation of Zeta function of Riemann, arXiv:math-ph/0105007v1 (2001); see also http://functions.wolfram.com, citation index: 10.01.06.0012.01 and 10.01.17.0003.01.

[20] K. Maślanka, Báez Duarte’s Criterion for the Riemann Hypothesis and Rice’s Integrals, arXiv:math/0603713v2 (2006).

[21] B. Riemann, Ueber die Anzahl der Primzahlen  unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie, 671–680 (1859). English translation available at http://www.maths.tcd.ie/pub/HistMath/People/Riemann.

[22] S. Wolfram, Jerry Keiper (1953–1995), The Mathematica Journal 5 (1995). Obituary available at https://www.stephenw olfram.com/publications/jerry-keiper/.

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST