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Abstract: We present a simple but efficient method of calculating Stieltjes constants at a very high level of precision, up to
about 80 000 significant digits. This method is based on the hypergeometric-like expansion for the Riemann zeta function
presented by one of the authors in 1997 [19]. The crucial ingredient in this method is a sequence of high-precision numerical
values of the Riemann zeta function computed in equally spaced real arguments, i.e. ζ(1 + ε), ζ(1 + 2ε), ζ(1 + 3ε), ...
where ε is some real parameter. (Practical choice of ε is described in the main text.) Such values of zeta may be readily
obtained using the PARI/GP program, which is especially suitable for this.
Key words: Riemann zeta function, Stieltjes constants, experimental mathematics, PARI/GP computer algebra system

I. Introduction: the Riemann ζ Function

Fundamental formulas in number theory are seldom nu-
merically efficient. Although deep and absolutely precise,
they may even hide the most important features of involved
quantities. As a prominent example we consider the cele-
brated zeta function ζ(s) discovered by Euler in 1737 and
published in 1744 [11] as a function of real variable and
meticulously investigated by Riemann in the complex do-
main in his famous memoir submitted in 1859 to the Prus-
sian Academy [21]:

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1. (1)

This is a special case of a more general class of functions
called Dirichlet series. It is divergent in the most interest-

ing area of the complex plane, i.e., in the so called criti-
cal strip 0 ≤ Re(s) ≤ 1 where all complex zeros of zeta
lie. However, as was shown by Riemann, the definition (1)
does contain information about the zeta function on the en-
tire complex plane but the process of analytic continuation
must be used in order to reveal global behavior of this func-
tion. There is no universal procedure how to achieve this in
practice and usually various ingenious tricks are required.
For example, considering alternating version of (1) leads to
another Dirichlet series which is convergent for Re(s) > 0
(except s = 1), i.e. also inside the critical strip:

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n

ns
, Re(s) > 0, s ̸= 1.

However, in order to obtain globally convergent represen-
tation for ζ one has to use more sophisticated techniques.
We shall describe such an approach below.
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Fig. 1. Plot of the zeta function for real variable (blue curve). Euler discovered the zeta function in 1737 and found its deep connection
with prime numbers [11] (see box on the right). But it was Riemann who in 1859 rigorously proved certain fundamental equation for it
and made its analytical continuation to the entire complex plane, except for a single pole for s = 1 [21] (box on the left). Values of zeta

for s = 2n, n = 1, 2, ... were found by Euler in closed form (red dots). ζ(−2n) = 0 are so called trivial zeros (green dots)

The Riemann zeta function contains the (heavily en-
coded) puzzle of the distribution of prime numbers. Accord-
ing to the famous saying by Paul Erdös (1913–1996), the so-
lution to this puzzle may appear only “in millions of years,
but even then it will not be complete, because in this case we
are facing Infinity”. We know, however, that this secret lies
in the distribution of the zeros of the zeta function, i.e. the
roots of the “simple” equation ζ(s) = 0, on the complex
plane. In 1859 Riemann hypothesized that all these roots
(except for the so-called trivial ones) lie precisely on the line
Re s = 1

2 .
Despite the passage of more than 150 years and the per-

sistent efforts of many top-class mathematical talents, the
Riemann hypothesis remains unsettled. We simply do not
know whether it is true or false. (Some think that it is unde-
cidable.) Computer experiments based on billions of numer-
ically calculated complex roots seem to confirm it. However,
an exact proof still remains beyond the reach of mathemati-

cians. It seems no one has even had a good idea of how to
tackle this problem so far. Some have suggested that “new
math” is needed, but this view is too vague to be of any prac-
tical help.

II. Stieltjes Constants

The Stieltjes constants are closely related to the Riemann
zeta function, and since this function is extremely important
in the analytical number theory, these constants are equally
important.

Formulas for the Stieltjes constants may serve as another
example of strict and deep but numerically inefficient formu-
las. These constants are essentially coefficients of the Lau-
rent series expansion of the zeta function around its only
simple pole at s = 1:

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)
n

n!
γn (s− 1)

n
. (2)
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Fig. 2. The zeta function shows its essence and its true meaning only in the complex domain, and we owe knowledge about it to Riemann.
The upper graph is the real part of the zeta function ζ(s), the lower graph is its imaginary part in the complex domain. The blue plane is

the plane of the complex variable s

Primary definition of these fundamental constants was found
by Thomas Jan Stieltjes and presented in a letter to his
close friend and collaborator Charles Hermite dated June 23,
1885 [14]:

γn = lim
m→∞

(
m∑

k=1

(ln k)
n

k
− (lnm)

n+1

n+ 1

)
. (3)

When n = 0 the numerator in the first summand in (3) is
formally 00 which is taken to be 1. In this case, (3) reduces
simply to the well-known Euler-Mascheroni constant

γ0 = lim
m→∞

(
m∑

k=1

1

k
− lnm

)
,

which, roughly speaking, measures the rate of divergence of
the harmonic series.

Effective numerical computing of the constants γn is
quite a challenge because the formulas (3) are extremely
slowly convergent. Even for n = 0, in order to obtain just
10 accurate digits one has to sum up exactly 12 366 terms
whereas in order to obtain 10 000 digits (which is indeed re-
quired in some applications) one would have to sum up un-
realistically large number of terms: nearly 5 ·104342 which is
of course far beyond the capabilities of the present day com-
puters. For n > 0 the situation is still worse. Therefore we
have to seek for other faster algorithms.

Due to the terribly slow convergence mentioned above,
the progress in calculating the numerical values of Stielt-
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Fig. 3. Both surfaces shown in Fig. 2 intersect the plane of the complex variable s along certain irregular curves.After overlapping these
surfaces, it turns out that these curves intersect themselves at certain points – these are the complex zeros of the zeta function (indicated

by vertical blue lines). The Riemann hypothesis says that all these zeros are placed exactly on the line Re s = 1/2

jes constants values was very slow. In his letter to Hermite,
Stieltjes himself gave just two very inaccurate values for
these constants γn (except for the then well-known Euler-
Mascheroni constant γ0):

γ1 = −0.072815(520)...

γ2 = −0.004(7)...

(Here and below, digits in brackets are incorrect.) Two years
later, in 1887, Jensen [15] gave eight values with nine signif-
icant digits:

γ1 = +0.072815845...

γ2 = −0.004845182...

γ3 = −0.000342306...

γ4 = +0.0000968(89)...

γ5 = −0.000006611...

γ6 = −0.000000332...

γ7 = +0.000000105...

γ8 = −0.000000009...

Certain hope is in using integral representations of the
Stieltjes constants. There are at least three such integrals:

• by directly applying Cauchy integral formula for
derivatives to the Riemann zeta function we get:

γn =
(−1)nn!

2π

∫ 2π

0

e−nitζ
(
eit + 1

)
dt, (4)

• by Franel, 1895 [13]

γn =
1

2
δn,0+

+
1

i

∫ ∞

0

dt

e2πt − 1

[
(ln (1−it))

n

1− it
− (ln (1+it))

n

1 + it

]
,

(5)
• by Blagouchine [7, 8]

γn =
π

2(n+ 1)

∫ ∞

−∞

(
ln
(
1
2 ± it

))n+1

(coshπt)
2 dt. (6)

Using these integral representations one can, for example
with the help of the procedure NIntegrate which is built in

Fig. 4. Real part of the integrand (4) which contributes to the value
of γ40 (integrating the imaginary part which is antisymmetric with
respect to t = π gives zero). The number of oscillations grows as
n. Therefore, for large n the numerical integration procedure can-

not properly estimate this integral
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Fig. 5. Real part of the integrand in (6). The number of oscillations
grows with n but, contrary to the case (5), their amplitude also in-

creases very quickly with n

Wolfram Mathematica, calculate γn up to n = 1000 with
precision of several hundred significant digits in a reasonable
computer time. However, increasing n and/or the working
precision parameter in NIntegrate produces an error mes-
sage in the Mathematica output. This can be easily under-
stood when looking at the behavior of the integrand of (4)
which for growing n contains more large oscillations.

There are also several series representations of Stieltjes
constants, e.g. such as this given by I. Blagouchine [7, 8]

γn = − 1

n+ 1

∞∑
k=0

1

k + 1

∞∑
j=0

(−1)j
(
k

j

)
logn+1 (j + 1) ,

(7)
and another one found by M. Coffey [10] (Corollary 13, with
misprint)

γn =−2

3
n!

n∑
i=1

Bn−i+1c
n−i

i!(n−i+1)!
hi−

2

3c(n+1)
hn+1−

Bn+1

n+1
cn+1,

(8)
where

c ≡ ln 2,

hi ≡
∞∑
k=1

3−k
k∑

j=1

(−1)j2j

j + 1

(
k

j

)
lni(j + 1).

Unfortunately, both (7) and (8) are also very slowly conver-
gent and rather useless in numerical investigations – contrary
to what Coffey claims: “The expression may be attractive
for some computational applications because it exhibits even
faster convergence” (see [10], p. 23).

Significant progress took place in 1984-1985 with the
work of Ainsworth and Howell [3, 4] who received a grant
from NASA and probably used a computer. (It could be

an analog machine, but they did not disclose the techni-
cal details of their calculations.) They used another inte-
gral representation of the Stieltjes constants and with the
help of the Gauss numerical integration formula tabulated
200 initial γn with just 10 significant digits each. They
also calculated a few selected values of γn for larger n =
= 500, 1000, 1500, 2000. In the latter cases, some of their
digits are incorrect.

In 1992, Keiper1 published an effective algorithm for
calculating Stieltjes constants. Keiper’s algorithm was later
implemented in Mathematica [17]. (However, no technical
details about this algorithm can be found in Mathematica
documentation except for a concise statement that it “uses
Keiper’s algorithm based on numerical quadrature of an inte-
gral representation of the zeta function and alternating series
summation using Bernoulli numbers”.)

An efficient but rather complicated method based on
Newton-Cotes quadrature has been proposed by Kreminski
in 2003 [18]. This was a real achievement since Kreminski
computed γn up to n = 3000 with several thousand digits
and was able to observe certain interesting structures in the
distribution of γn.

Quite recently (2013) Johansson presented a particu-
larly efficient method [16]. He calculated a new, impressive,
record-breaking value of γn for n = 100 000. Later (2018),
in collaboration with Blagouchine, Johansson reached the
next record values: n = 1010, 1015 and 10100.

In the present paper yet another method of computing
Stieltjes constants will be described which, we believe, is
perhaps not as efficient as Johansson’s approach, yet it is
much simpler and it may be easily and quickly used in prac-
tical calculations for obtaining γn up to n ∼ 30 000 with
precision ∼ 80 000 significant digits.

III. Riemann Zeta Representation

In 1997, it was shown by one of the present authors
[19, 20] that the Riemann zeta function may be expressed
as

ζ(s)=
1

s−1

[
A0+

(
1−s

2

)
A1+

(
1−s

2

)(
2−s

2

)A2

2!
+...

]
= (9)

=
1

s−1

∞∑
k=0

Ak

k!

k∏
i=1

(
i− s

2

)
= (10)

=
1

s−1

∞∑
k=0

Γ
(
k + 1− s

2

)
Γ
(
1− s

2

) Ak

k!
= (11)

=
1

s−1

∞∑
k=0

(
1− s

2

)
k

Ak

k!
, s ∈ C\{1}, (12)

1 Jerry B. Keiper (1953–1995) worked for Wolfram Research and was an active contributor to Mathematica. He developed, among others, many effective
algorithms for numerical computation of special functions. He died tragically returning from work on his bike, hit by a car.
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where

Ak =

k∑
j=0

(−1)
j

(
k

j

)
(2j + 1)ζ(2j + 2) = (13)

=
1

2

k∑
j=0

(
k

j

)
(2j + 1)

(2π)
2j+2

B2j+2

(2j + 2)!
, (14)

(x)k is the Pochhammer symbol and Bn is the nth Bernoulli
number [2].

The main idea behind this approach is to remove the sin-
gle pole of the zeta function multiplying it by s− 1 and then
to fix values of this entire function in an infinite number of
equally spaced real points, which corresponds simply to in-
terpolation with nodes. Note that in (9)–(12) these points are
precisely the points in which, as shown by Euler, zeta val-
ues are known exactly, i.e. s = 2, 4, 6, ... Indeed, series (9)
truncates in these points and gives appropriate exact values.

It may be shown that this representation is globally con-
vergent. Real coefficients Ak expressed as an alternating bi-
nomial sum are in fact combinations of Bernoulli numbers
and even powers of π. On the other hand, (−1)

k
Ak are sim-

ply consecutive finite step derivatives of some entire func-

tion, namely (2s+ 1)ζ(2s+ 2) that involves these points in
which, as Euler had shown, zeta is explicitly known.

Considered as a sort of polynomial interpolation with
fixed nodes the expansion (9) might appear trivial. How-
ever, this is not the case since many “simple” functions,
e.g. Lorentz function 1/(1+ x2), exhibit nasty phenomenon
known as the Runge effect: oscillations between fixed nodes
growing when the number of terms in the series increases.
This behavior may be cured using unequally spaced nodes,
so called Chebyshev nodes, but this in turn spoils the very
idea of (9), which naturally leads to Pochhammer symbols.
From this point of view the global validity of (9) is equiva-
lent to the following simple statement: the regularized Rie-
mann zeta function (s− 1)ζ(s) does not exhibit Runge phe-
nomenon.

The original proof of (9) contained a gap [19]. Rigor-
ous proof was given in 2003 by Báez-Duarte2 [5] who also
presented certain simple and esthetic criterion for the Rie-
mann Hypothesis based on expansion (9) [6]. Another very
short and particularly elegant proof of (9) using Carlson the-
orem was given by Flajolet and Vepstas in 2007 [12]. Later
a whole class of similar zeta representations was published
[20].

Fig. 6. Curious behavior of the coefficients Ak. given by (13). There are unexpected oscillations with slowly diminishing frequency
(roughly as k−2/3) and nearly exponentially diminishing amplitude. Note that the k-axis is scaled as 3

√
k. Red points correspond to posi-

tive values of Ak and blue to negative ones

2 The prominent Venezuelan mathematician Luis Báez-Duarte (1938–2018), educated in the USA, Massachusetts Institute of Technology, and working at
the Instituto Venezolano de Investigaciones Científicas (IVIC) in Caracas, was a close friend and collaborator of one of the authors (K.M.). Although they
had never met in person, from 2003 until Luis’ death, they corresponded regularly, mainly on mathematical topics, but also on general topics related to
literature, history, politics, etc.
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Coefficients Ak tend to zero sufficiently fast, which is
crucial to assure the global convergence of the series (9).
However, their detailed behavior with growing k is quite
striking as can be seen on a logarithmic plot with the k-axis
rescaled as 3

√
k. More precisely: they exhibit curious and un-

expected oscillatory behavior with both amplitude and fre-
quency decreasing when k tends to infinity (see Fig. 6).

This peculiar behavior “cries for explanation” as stated
in [12] (p. 2). Using the saddle point method one can show
that for k tending to infinity the following asymptotics holds
(K. Maślanka, An Asymptotic Expansion for the Stieltjes
Constants, in preparation):

Ak∼
4π3/2

√
3κ

exp

(
−3

2
κ+

π2

4κ

)
cos

(
4π

3
−3

√
3

2
κ−

√
3π2

4κ

)
,

(15)
where

κ ≡ π2/3 3
√
k ,

Fig. 7. Asymptotic formula (15) works quite well: red dots repre-
sent exact values of Ak as given by (13) whereas smaller green dots

are calculated from (15)

Coefficients Ak also obey certain simple algebraic iden-
tities which stem directly from trivial zeros of zeta and
from the fact that ζ(0) = − 1

2 . Indeed, substituting in (9)
s = 0,−2,−4,−6, ... and making use of elementary prop-
erties of the Euler gamma function we successively get:

∞∑
k=0

Ak =
1

2
, (16)

∞∑
k=0

(k + 1)Ak = 0 ,

∞∑
k=0

(k + 1)(k + 2)Ak = 0 ,

∞∑
k=0

(k + 1)(k + 2)(k + 3)Ak = 0 ,

. . .

After some simple manipulations we finally get:

∞∑
k=0

knAk =
(−1)n

2
, n = 0, 1, 2, ... (17)

with the convention kn = 1 when k = n = 0. Unfortunately,
due to slow convergence of (17) when n is large, these iden-
tities cannot be effectively used to calculate Ak. Another in-
teresting identity follows from ζ ′(0) = − 1

2 log(2π):

∞∑
k=0

AkHk = 1− log(2π), (18)

where Hk ≡
k∑

i=1

1
i is the kth harmonic number.

IV. Algorithm for Calculating Stieltjes Constants

The particular choice of nodes in s = 2, 4, 6, ... in the ex-
pansion (9), albeit the most natural, is by no means the only
one. One only requires that the prescribed points be strictly
equally spaced. For the purpose of present calculations we
choose the following sequence of points:

1, 1 + ε, 1 + 2ε, 1 + 3ε, ...

where ε is a certain real, not necessarily small number.
More precisely, define certain entire function f as:

f(s) :=

{
ζ(s)− 1

s−1 , s ̸= 1,

γ , s = 1,
(19)

where γ is the Euler constants which stems from the appro-
priate limit. Then, instead of (11), we have

f(s) =

∞∑
k=0

Γ
(
k − s−1

ε

)
Γ
(
− s−1

ε

) αk

k!
,

with

αk =

k∑
j=0

(−1)
j

(
k

j

)
f(1 + jε). (20)

Note that coefficients αk depend on ε but for simplicity we
shall temporarily drop this dependence in the notation. Now
directly from (2) we have:

γn = (−1)n
dn

dsn
f(s)

∣∣∣∣
s−1

.

Then, after some elementary calculations we get the main
result of the present paper:

γn = n!
εn

∞∑
k=n

(−1)k

k! αkS
(n)
k , (21)
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Fig. 8. Behavior of coefficients αk given by (20) for different choices of the parameter ε

Fig. 9. Plots of precision of ak and γk versus k for precision of the precomputed equidistant zeta values equal to 10 000 significant digits
and for four values of the auxiliary parameter ε: blue – ε−5, red – ε−10, green – ε−15, purple – ε−20. For each color the upper, nearly
straight line segment corresponds to precision of αk, and the piece of a curved line of the same color corresponds to the precision of γk.
Since precision of αk diminishes with growing k, for any given value of ε there always exists a specific, unambiguous value of index k0

such that for all k > k0 precisions of all αk are numerically zero. Hence in the formula (23) it is enough to sum only up to this value
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where S
(n)
k are signed Stirling numbers of the first kind.

Note that in the literature there are different conventions con-
cerning denotation and indices of Stirling numbers which
may be confusing. Here, following [2], we shall adopt the
following convention involving the Stirling numbers and the
Pochhammer symbol:

(x)k ≡ Γ(k + x)

Γ(x)
=

k−1∏
i=0

(x+ i) =

= (−1)k
k∑

i=0

(−1)iS
(i)
k xi =

k∑
i=0

∣∣∣S(i)
k

∣∣∣xi .

Denoting

βnk ≡ n!

k!

S
(n)
k

εn
,

we can rewrite (21) as formally an infinite matrix product

γn =

∞∑
k=n

βnk αk . (22)

The summation over k starts from n since βnk ≡ 0 for
k < n. Precision of α1 is equal to precision of precom-
puted values of f(s) given by (19) in equidistant nodes.
When k grows the precision of consecutive αk almost lin-
early tends to zero. Thus there always exists a certain cut-off
value of k = k0. Therefore, the summation in (22) should be
performed to this value:

γn =

k0∑
k=n

βnk αk . (23)

(Adding more terms is inessential. In other words, one can-
not compute γn for n > k0. In order to perform this, one
should increase precision of the precomputed values of f(s)
which would in turn proportionally increase k0, see Fig. 9
for detailed description.)

As pointed earlier ε need not to be small; however,
choosing smaller ε greatly accelerates convergence of the se-
ries. Yet, it turns out that smaller ε implies smaller k0. What
is really important is that all significant digits of γn obtained
from the finite sum (23) are correct.

Of course, γn eventually does not depend on a particular
choice of ε, as expected, although αk as well as the rate of
convergence of (21)–(23) does. In fact series (21) converges
for any value of ε > 0 but the rate of convergence becomes
extremely small for ε ∼ 1. On the other hand, the smaller
ε, the faster the rate of convergence. However, since αk also
depends on ε, choosing a smaller value for ε requires higher
precision of precalculated values of f(s) which in turn may
be very time consuming. Hence, an appropriate compromise
in choosing ε is needed.

Formula (23) is particularly well-suited for numerical
calculations. Typically the algorithm has three simple steps:

1. Tabulating function (19) for equidistant arguments
1 + jε, i.e. f(1 + jε), j = 0, 1, 2, ... This is most
time-consuming and requires appropriate choice of
parameter ε. (In our case, we have chosen the value
ε = 2−10.) What seems most convenient for these cal-
culations is a small but extremely efficient program
PARI/GP which has implemented particularly opti-
mal zeta procedure. We used the Cyfronet Prometheus
computer where calculating single value of f(s) with
80 000 significant digits requires about 10–15 minutes
each. Since this procedure may be easily parallelized,
in order to compute more than 30 000 values of f we
started several dozen independent routines (each cal-
culating a few thousands values of f ).

2. Calculating αk using (20) and the precomputed values
of f .

3. Calculating Stieltjes constants using (21).
(Contrary to the above steps 2. and 3., step 1 requires a pow-
erful computer, whereas steps 2 and 3 can be quickly per-
formed on a typical PC.) It should be emphasized that with
the αk coefficients properly calculated, obtaining γn re-
quires only a dozen or so minutes on a very modest PC
machine. One property of the result (21) should again be
stressed out: all digits of γn obtained from (23) are signif-
icant and reliable.

Step 1 was achieved using the following PARI code:
\g4
\p 80000;
default(parisizemax,1000000000);
allocatemem(1000000000);
eps=2^-10;
f(s)=if(s-1,zeta(s)-1/(s-1),Euler);
for(j=0,32000,write("zeta.dat","{",

1+j*eps,",",f(1+j*eps),"},"));
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56 K. Maślanka, A. Koleżyński
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Appendix: Struggling with Certain PARI Bug

Common experience shows that there are no computer programs, especially larger ones, which – in certain specific and
usually unpredictable situations – would not exhibit misbehavior. Computer program errors, according to the old tradition
called “bugs”, are usually an integral part of each program. Of course, program developers, or rather the large development
teams that create them, spare no effort to ensure that their products are error-free. However, it is virtually impossible to
remove them completely. In addition, professional computer programs are constantly developed and expanded, sometimes
over many years, and new functions are added in subsequent versions, often at the explicit request of users. In this way, while
previous bugs are removed, new bugs are inevitably added, although, of course, this happens unknowingly. The key role here
is played by the fruitful cooperation of program users with their developers: numerous users scattered all over the world,
solving their own specific problems, at the same time intensively test programs and provide their developers with relevant
information about undesirable behavior of their products.

A sentence from a letter written by a PARI/GP user is particularly significant: “I hope you and your collaborators will be
able to eliminate the bugs [...] in the forthcoming (final?) release of PARI” (April 1997). More than a quarter of a century has
passed since then. PARI is growing, has a faithful group of users (mainly mathematicians dealing with the number theory),
new functions and procedures are added, but the list of “bugs” does not decrease at all. It is instructive to look at the page:
link3, illustrating the intense and fruitful interaction of PARI users with its creators. For someone unfamiliar with the essence
of computer programs, the sentence from the above-quoted letter sounds like the proverbial “wishful thinking”. It is naive
and unrealistic, although it was sent in good faith. The aforementioned “final version” of the program is an unattainable goal
to which one can, at best, “approach asymptotically”. It is also worth adding that this sentence was rightly placed on the
PARI website with a meaningful title: “Fun!”.

When testing the algorithm described in this article, we came across a surprising error in the numerical computation of
the fundamental Riemann zeta function, which is built into PARI. As mentioned earlier, the presented algorithm requires
“input” zeta values of great precision; in our case, we chose 80 000 significant digits. It was a kind of compromise between
relatively high precision and reasonable computation time (several weeks on many cores of the Prometheus supercomputer

3 https://pari.math.u-bordeaux.fr/cgi-bin/pkgreport.cgi?pkg=pari
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in Cyfronet in Cracow. Probably no one has methodically tested PARI for calculations of the Riemann zeta with such great
precision before.

The choice of PARI – a small (in the command-line version only about 12 MB) dedicated to calculations in the number
theory as a tool to obtain the value of the zeta function – resulted from the high speed of calculations: several times greater
than, for example, Mathematica (size of installation files over 4 GB). Unexpectedly tt turned out that the result file of the
necessary numerical values in the form of the array {1 + jε, f(1 + jε)} contained incorrect digits in the range of index
j from 11 201 to 12 401.

Of course, finding those digits that were wrong among more than 2.5 billion digits was quite a challenge. It was a very
tedious and frustrating job, like looking for the proverbial needle in a haystack. But it was even more challenging to figure
out the very cause of this error. In the first case, some properties of the αk coefficients proved to be helpful. In the second
case, professional help of the PARI program developers turned out to be indispensable.

The first sign of the presence of these erroneous digits was that the coefficients αk calculated from these values, instead
of rapidly (exponentially) decrease to zero with the increase of the index k, drastically changed its behavior, see Fig. A1.

Fig. A1. Coefficients αk given by (20) are extremely sensitive to even one wrong digit in the calculated value of the zeta function, even at
a very distant place of its decimal expansion. The figure illustrates a sudden change in the behavior of the αk coefficients (red line) when
in the correct value of the regularized zeta function f(1 + εj) for j = 1000 only single digit is replaced with another one that differs
from the correct one just by 1. The replaced digit might be in a very remote significant place (in this case it was on position 4000 after the

decimal point), and yet αk would “feel” and reveal that change anyway

Since the (regularized) zeta function, however complicated and mysterious, is a smooth function, the successive finite
differences of equidistant values of this function from the above-mentioned table f(1 + jε) should lie on a smooth curve.
The tests performed with the use of the Mathematica procedure Differences that calculates successive finite differences
revealed that for the above-mentioned values of index j and with the order of these differences about 400, disturbing oscil-
lations appeared instead of a sequence of points lying along a smooth curve, see Fig. A2.

Intensive and very tedious tests, requiring great patience, time and computer resources, lasted for several weeks and
were carried out with professional and very kind cooperation of employees of the Cyfronet Computer Center in Kraków
(administrators of the Prometheus supercomputer). In order to eliminate the potential causes of generating wrong digits, we
tested newer and newer development versions of PARI released daily. We used two different compilers (Intel icc 19.1.1.217
and GNU gcc version 4.8.5 20150623). We have compiled PARI in serial and parallel version (threading engine: pthread,
mpi, single). Additionally, for the parallel version, we also ran single-core jobs to rule out the PARI “parfor” command as
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Fig. A2. Wolfram Mathematica procedure Differences[list,n], which gives the nth differences of a given list, when applied to the list of
“contaminated” data of the function f(1 + jε) reveals that some digits are wrong. When the integer parameter n is sufficiently large then
even a single wrong digit differing from the proper one by unity produces oscillations instead of a smooth distribution of points. In this
case one had to use n = 400 to reveal the error. (In the above graph, both axes have been removed as they are irrelevant to demonstrate

the effect described)

a possible source of the problem. We used different operating systems (Linux and Windows 10), different versions of Linux
cores (x86-64, x86-64 / GMP-6.2.1, x86-64 / GMP-6.0.0) and different types of processors (Intel and AMD). We compared
the obtained numbers with the results obtained with Wolfram Mathematica on PCs with AMD and Intel processors (these
calculations took several times longer than with PARI). We additionally performed a series of calculations for precision from
30 000 to 90 000 in 10 000 steps and from 71 000 to 89 000 in 1000 steps. It turned out that the wrong numbers appeared at
174 decimal places only for the precision of 74 000 and 80 000.

The results of these tests were successively (from August 2021 to December 2021) delivered to the authors of the PARI
program, who made appropriate corrections in the program code. (Incidentally, the first such correction did not remove the
error; it appeared again but in a different range of index j, and even worse, i.e. for more significant digits of the Riemann
zeta function...)

In the end, it turned out that the cause of this error was simply in the PARI-implemented procedure for computing the
value of the zeta function which uses the classical Euler-Maclaurin algorithm. Specifically, the values of the Bernoulli num-
bers required to compute the zeta function were rounded unnecessarily. It was due to double roundings occurring when
caching Bernoulli numbers, because of too frequent precision reductions. This bug did not affect the low precision computa-
tions, but was particularly bothersome with the algorithm described here. More details can be found here: link4.

It should be emphasized that when computing the zeta function, PARI first computes and tabulates the appropriate
Bernoulli numbers, according to the Euler-Maclaurin formula. During this stage of the calculations, which – depending on
the precision set at the beginning – sometimes takes several hours, the results do not start to appear, and the program pretends
that it has “hung”.

The revised version of the program finally appeared at the end of December 2021. From that moment, having the neces-
sary and reliable numerical data, i.e. the high precision (regularized) zeta values, we were able to return to purely mathemat-
ical problems and continue the main project of calculating the Stieltjes constants.

Finally, it should be emphasized once again that the main advantage of the algorithm for calculating important Stieltjes
constants presented herein is its mathematical simplicity and numerical efficiency. Moreover, it can be a convenient starting

4 https://pari.math.u-bordeaux.fr/cgi-bin/bugreport.cgi?bug=2311
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point for deriving certain new asymptotic expansion for these constants, both more accurate and simpler than several expan-
sions known in the literature. This will be the topic of another publication (K. Maślanka, An Asymptotic Expansion for the
Stieltjes Constants, in preparation).
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