• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 24 (3) 2018, 177–185

Numerical Solution via Numerov Method of the 1D-Schrödinger Equation with Pseudo-Delta Barrier

Martinz Samuel D.G. 1, Ramos Rubens V. 2

1Federal Institute of Education, Science and Technology of Ceara, Fortaleza-Ce, Brazil
E-mail: samueldgm@fisica.ufc.br

2Lab. of Quantum Information Technology, Department of Teleinformatic Engineering Federal University of Ceara – DETI/UFC, C.P. 6007 – Campus do Pici, 60455-970 Fortaleza-Ce, Brazil
E-mail: rubens.viana@pq.cnpq.br

Received:

Received: 09 February 2018; revised: 25 July 2018; accepted: 08 August 2018; published online: 30 September 2018

DOI:   10.12921/cmst.2018.0000017

Abstract:

In this work, aiming to solve numerically the Schrödinger equation with a Dirac delta function potential, we use the Numerov method to solve the time independent 1D-Schrödinger equation with potentials of the form V (x) + αδp(x), where δp(x) is a pseudo-delta function, a very high and thin barrier. The numerical results show good agreement with analytical results found in the literature. Furthermore, we show the numerical solutions of a system formed by three delta function potentials inside of an infinite quantum well and the harmonic potential with position dependent mass and a delta barrier in the center.

Key words:

Dirac delta function potential, Numerov method, Schrödinger equation

References:

[1] J.J. Álvarez, M. Gadella, F.J.H. Heras, L.M. Nieto, A one- dimensional model of resonances with a delta barrier and mass jump,Phys.Lett.A373,4022–4027(2009).
[2] F.M.Toyama,Y.Nogami,Transmission-reflectionproblemwith a potential of the form of the derivative of the delta function, J. Phys. A: Math. Theor. 40, F685–F690 (2007).
[3] A.V. Zolotaryuk, Y. Zolotaryuk, Controllable resonant tun- nelling through single-point potentials: A point triode, Phys. Lett. A 379, 511–517 (2015).
[4] A.V. Zolotaryuk, Boundary conditions for the states with reso- nant tunnelling across the δ’-potential, Phys. Lett. A 374, 1636– 1641 (2010).
[5] M. Belloni, R.W. Robinett, The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics, Phys. Rep. 540, 25–122 (2014).
[6] M. Pillai, J. Goglio, T.G. Walker, Matrix Numerov method for solving Schrödinger’s equation, Am. J. Phys., 80, 11, 1017– 1019, 2012.
[7] P. Pedram, M. Vahabi, Exact solutions of a particle in a box with a delta function potential: The factorization method, Am. J. Phys. 78, 8, 839–841 (2010).
[8] D.J. Griffiths, Introduction to Quantum Mechanics, 2nd Edition; Pearson Education Chapter 2, 2005. Available online in http://physicspages.com/2012/08/21/infinite-square- well-with-delta-function-barrier.
[9] O. von Roos, Position-dependent effective masses in semicon- ductor theory, Phys. Rev. B 27, 7547 (1983).
[10] A.Ganguly,S ̧.Kuru,J.Negro,L.M.Nieto,Astudyofthebound states for square potential wells with position-dependent mass, Phys. Lett. A 360, 228–233 (2006).
[11] S.D.G. Martinz, R.V. Ramos, Double quantum well triple bar- rier structures: analytical and numerical results, Can. J. Phys. 94, 11, 1180–1188 (2016).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_26_1_2020_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST