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Abstract: In this work, aiming to solve numerically the Schrödinger equation with a Dirac delta function potential, we use
the Numerov method to solve the time independent 1D-Schrödinger equation with potentials of the form V (x) + αδp(x),
where δp(x) is a pseudo-delta function, a very high and thin barrier. The numerical results show good agreement with
analytical results found in the literature. Furthermore, we show the numerical solutions of a system formed by three delta
function potentials inside of an infinite quantum well and the harmonic potential with position dependent mass and a delta
barrier in the center.
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I. INTRODUCTION

The solutions of the Schrödinger equation for different
potentials have attracted much interest since the early days
of quantum mechanics. Nowadays that interest has been re-
newed due to the design and fabrication of nanodevices. An
interesting situation occurs when the potential includes a delta
function or its derivative. Some analytical solutions have been
provided for special cases [1–4] and a good review can be
found in [5]. In order to obtain more results with arbitrary
potential including the delta function as a barrier, a numerical
method could be used. In this direction, the present work
uses the Numerov method to solve numerically the time in-
dependent 1-D Schrödinger equation with potentials of the
form V (x)+αδp(x), where δp(x) is a pseudo-delta function,
a very high and thin barrier. Such potential is used here as an
approximation of potentials with Dirac delta function. Our re-
sults show a good agreement with known analytical solutions;
we also consider new potentials not found in the literature:
three delta barriers inside of an infinite quantum well and the

delta function in the center of the harmonic potential in a 1D
position mass dependent Schrödinger equation.

II. THE NUMEROV METHOD
AND THE NUMERICAL SOLUTION

OF THE SCHRÖDINGER EQUATION WITH
PSEUDO-DELTA POTENTIAL

In order to find the solutions of the time independent
1D-Schrödinger equation, one has to solve

d2ψ (x)

dx2
= −2m

~2
[E − V (x)]ψ (x) (1)

together with the appropriated boundary conditions. Its dis-
cretization using the Numerov method is [6][

− ~2

2m
B−1A+ V

]
ψ = Eψ (2)
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ψ =
[
. . . ψ (xk−1) ψ (xk) ψ (xk+1) . . .

]T
(3)

A = (I−1 − 2I0 + I1)
/

(∆x)
2 (4)

B = (I−1 + 10I0 + I1) /12 (5)

V =

 V (x1) 0 0

0
. . . 0

0 0 V (xn)

 . (6)

In (2)–(6) Ik, k = 0, −1, and 1, is a matrix of 1s along
the kth diagonal and zeros elsewhere. Here, we are interested
in the solutions of

− ~2

2m

d2ψ

dx2
+ [V (x) + αδp (x)]ψ = Eψ, (7)

where δp(x) is a very thin and high barrier located around
point x = 0.

Before showing the numerical results of (7) using (2)–(6),
we make a brief review of some analytical results about
the eigenfunctions and energies when the potential includes
a delta function. The first result, easily found in textbooks of
quantum mechanics, is the discontinuity of the first derivative
of the eigenfunctions in the position of the delta function. For
a delta function in x = 0 and strength parameter α, one has

[
dψ

dx

∣∣∣∣
x→0−

− dψ

dx

∣∣∣∣
x→0+

]
=

2mα

~2
ψ (0) . (8)

From (8) one can note that if ψ(0) = 0, then the particle
does not “see” the delta function and the first derivative is con-
tinuous. Now, let us consider the eigenfunction φn(x) with
associated energy En a solution of the Schrödinger equation
with potential V (x)

− ~2

2m

d2φn
dx2

+ V (x)φn = Enφn. (9)

The solution of the Schrödinger equation with potential
V (x) + αδ(x), ψ(x), can be written in the φn(x) basis as
ψ (x) =

∑
n cnφn (x). Thus, substituting in the Schrödinger

equation one gets

− ~2

2m

d2
∑
n cnφn
dx2

+ [V (x) + αδ (x)]
∑
n

cnφn = E
∑
n

cnφn
(10)

⇒
∑
n

cn
−~2

2m

d2φn
dx2

+ V (x)φn

+
∑
n

cn [αδ (x)− E]φn = 0
(11)

⇒
∑
n

cn [αδ (x) + (En − E)]φn = 0. (12)

Now, taking the inner product of (12) with φ∗m (x), one has∫ ∞
−∞

∑
n

cn [αδ (x) + (En − E)]φnφ
∗
mdx = 0, (13)

⇒
∑
n

cnα

∫ ∞
−∞

δ (x)φnφ
∗
mdx

+
∑
n

cn (En − E)

∫ ∞
−∞

φnφ
∗
mdx = 0,

(14)

⇒
∑
n

cnαφn (0)φ∗m (0) + cm (Em − E) = 0, (15)

⇒αφ∗m (0)ψ (0) = cm (E − Em)

⇒cm =
αφ∗m (0)ψ (0)

(E − Em)
.

(16)

Hence,

ψ (x) =
∑
n

αφ∗n (0)ψ (0)

(E − En)
φn (x) . (17)

Finally, using (17) for calculating ψ(0), one gets

1

α
=
∑
n

|φn (0)|2

(E − En)
. (18)

Clearly (18) imposes a restriction on the allowed energy val-
ues. In the first order approximation one has E ∼ En +
α|φn(0)|2 [5]. Now, returning to (17), the normalization of
the quantum state ψ(x) requires that

∫ ∞
−∞
|ψ (x)|2 dx = 1 =

=

∫ ∞
−∞

∑
n

αφ∗n (0)ψ (0)

(E − En)
φn (x)

×
∑
m

αφm (0)ψ∗ (0)

(E − Em)
φ∗m (x) dx

(19)

=α2 |ψ (0)|2
∑
n,m

φ∗n (0)φm (0)

(E − En) (E − Em)

×
∫ ∞
−∞

φn (x)φ∗m (x) dx

(20)

⇒ α2 |ψ (0)|2
∑
n

|φ∗n (0)|2

(E − En)
2 = 1 (21)
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For some famous quantum systems like infinite and finite
quantum wells and the harmonic potential, one has φn(0) = 0
for half of the possible values of n. Hence, from (21), one
has that if E = En then ψ(x) = φn(x) with φn(0) = 0 and
vice-versa.

The first issue that one faces when trying to solve nu-
merically the Schrödinger equation with a delta barrier is the
discretization of the delta function. Obviously, it will have
a finite width and height. The obvious answer is to use some
approximation of the delta function. For example, one can
use one of the following three well-known approximations of
the Dirac delta function as a pseudo-delta function

δRp (x) =

{
1/ (2ε) − ε ≤ x ≤ ε
0 x < −ε or x > ε

, (22)

δGp (x) =
1

2
√
πε

exp

(
−x

2

4ε

)
, (23)

δPp (x) =
1

π

ε

x2 + ε2
. (24)

The Dirac delta function is obtained from (22), (23) or
(24) when ε → 0. In order to choose one of them for our
simulations we consider the following criterion: Equation (2)
can be rewritten as [S + δp]ψ = Eψ, where S is the Hamil-
tonian without delta function, S = (−~22m)B−1A+ V . Its
solution requires that det(S + δp −EI) = 0, where E is an
eigenvalue of (S + δp), δp is a diagonal matrix whose entries
are the discrete values of the pseudo-delta function chosen
and I is the identity matrix. Now, the following modifica-
tion can be implemented without changing the result of the
determinant: det(S − EnI + δp − (E − En)I) = 0, where
En is an eigenvalue of S. Using the Minkowski determinant
theorem, one has [det(S − EnI + δp − (E − En)I)]1/k ≥
[det(S−EnI)]1/k+[det(δp− (E−En)I)]1/k, which holds
true if (S−EnI) and (δp−(E−En)I) are non-negativek×k
Hermitean matrices. This is the case when E = En since
the eigenvalues of the matrix δp are exactly the elements of
δp that, according to (8) to (10), are always non-negatives.
Thus, using the Minkowski determinant theorem one has
0 ≥ 0 + [det(δp)]1/k. The equality is true only if at least one
element of δp is zero. Although this is a very good approxi-
mation for (23) and (24) when ε is large, it is really true for
(22) even when a not so large value of ε is used. Hence, our
simulations will use only (22) as a pseudo-delta function.

At last, since the pseudo-delta barrier has a finite height,
the strength parameter α is absorbed in the barrier height.

III. THE NUMERICAL SOLUTION OF THE MASS
INDEPENDENT POSITION SCHRODINGER

EQUATION WITH DELTA POTENTIAL

We start by considering the delta function in x = 0 in the
middle of an infinite quantum well (−10 nm < x < 10 nm)
with width equal to 2L = 20 nm. All numerical simulations
in this work were done using the software MATLABr. There
are two types of solutions for this case [7, 8]. The odd so-
lutions are exactly the same odd solutions of the quantum
infinite well without the delta function and the energies are
also the same, as foreseen by (21). On the other hand, the
allowed energies for the even solutions are those that satisfy
the condition [8]

tan

(√
2mE

~
L

)
= − ~2

mα

(√
2mE

~

)
. (25)

Fig. 1. The squared modulus and the first derivatives of the eigen-
functions ψ1 and ψ3

Hence, the quality of the numerical results is checked by
testing whether found solutions of the even modes satisfy
equations (8) and (25). For this system, Fig. 1 shows the
squared modulus of the eigenfunctions ψ1 and ψ3 and their
first derivatives with the expected discontinuities at x = 0.
Fig. 2 shows the energies for the first thirty modes while in
Fig. 3 it is shown how good the energy values found numeri-
cally satisfy (25), for the first twenty energies’ values of even
modes. At last, in Fig. 4 it is shown how good the boundary
condition given by (8) is satisfied by the derivatives of the first
15 even modes. The particle’s mass is 0.067me. In all figures
the eigenfunctions and their first derivatives are multiplied
and displaced by a constant factor in order to permit their
visualization inside of the potential function profile.

Similarly, for the finite quantum well with a delta barrier
in the middle, one can see in Fig. 5 the squared modulus of
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the eigenfunctions ψ1 and ψ3 while their derivatives with
the expected discontinuities at x = 0 are shown in Fig. 6, 7
shows the energies for the first nineteen modes while in Fig.
8 it is shown how good the boundary condition given by (8)
is satisfied by the derivatives of the first sixteen even modes.

Fig. 2. Energies for the first thirty modes. ‘ball’ – Infinite quantum
well without delta function.

‘square’ – Infinite quantum well with delta function in the middle

Fig. 3. Comparison between f1 = tan(kL) and f2 =
−~2k/(mα) (Eq. (25)) using the energy values found numerically
for the first twenty even modes. k = (2mE)1/2/~ (infinite quantum

well with delta barrier in the middle)

Now, the harmonic potential (the frequency of oscillation
is 1015 Hz) with the delta function in the middle is considered.
In Fig. 9 one can see the squared modulus of the eigenfunc-
tions ψ1 for both cases with (II) and without (I) delta function
while Fig. 10 shows the same for ψ3. The derivatives of ψ1

and ψ3 are shown in Fig. 11, the energies for the first 24
modes, with and without delta function, are given in Fig. 12
and, finally, Fig. 13 shows how good the boundary condition
given by (8) is satisfied by the derivatives of the first sixteen
even modes.

Fig. 4. Comparison between g1 = dψ/dx|0− − dψ/dx|0+ and
g2 = (2mα/~ 2)ψ(0) for the first 20 even modes

(infinite quantum well with delta barrier in the middle)

Fig. 5. The squared modulus of the eigenfunctions ψ1 and ψ3

Fig. 6. Derivatives of ψ1 and ψ3 versus x
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Finally, we consider an infinite quantum well of width
equal to 21 nm (0 ≤ x ≤ 21 nm) with three delta barriers,
located at x = 4.5 nm, x = 10.5 nm and x = 16.5 nm. The
squared modulus and the first derivatives of the eigenfunc-
tions ψ1 and ψ2 can be seen in Fig. 14. Similar plots for ψ9

and ψ10 are shown in Fig. 15. The allowed energies’ values
for the first 25 modes of four different situations are shown
in Fig. 16: I) three delta barriers, II) only the two lateral delta
barriers, III) only the central delta barrier, IV) infinite well
without any delta barrier.

Fig. 7. Energies for the first nineteen modes. ‘ball’- finite quantum
well. ‘square’ – finite quantum well with delta function in the middle

Fig. 8. Comparison between g1 = dψ/dx|0− − dψ/dx|0+ and
g2 = (2mα/~2)ψ(0) for the first sixteen even modes (finite quan-

tum well with delta barrier in the middle)

Fig. 9. The squared modulus of the eigenfunction ψ1 (I – without
the delta function; II – with the delta function at x = 0) for the

harmonic potential with frequency 1015 Hz

The odd modes do not have discontinuity of the first
derivative at the central barrier localization, but there are dis-
continuities at the lateral barriers positions. The even modes
have discontinuities of the first derivative in all three delta
barriers. One can also note in Fig. 16 that, as expected, the
parabolic behavior of the energy is broken by the delta bar-
riers. Moreover, the larger the number of delta barriers, the
larger the energies’ values.

Fig. 10. The squared modulus of the eigenfunction ψ3 (I – without
the delta function; II – with the delta function at x = 0) for the

harmonic potential with frequency of oscillation 1015 Hz
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Fig. 11. Derivatives of ψ1 and ψ3 versus x

Fig. 12. Energies for the first 24 modes. I- harmonic potential with-
out the delta function. II – harmonic potential with the delta function

in the middle

Fig. 13. Comparison between g1 = dψ/dx|0+ − dψ/dx|0− and
g2 = (2mα/~2)ψ(0) for the first sixteen even modes (harmonic

potential with delta barrier in the middle)

Fig. 14. Squared modulus and first derivatives of the eigenfunctions
ψ1 and ψ2

Fig. 15. Squared modulus and first derivatives of the eigenfunctions
ψ9 and ψ10

Fig. 16. Energies for the first 25 modes (infinite quantum well with
three delta barriers)
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IV. THE NUMERICAL SOLUTION OF THE MASS
DEPENDENT POSITION SCHRODINGER

EQUATION WITH DELTA POTENTIAL

In the cases where the particle’s mass depends on the po-
sition, mass and momentum operators do not commute. Thus,
one has to change the kinetic energy operator T in order to
get a Hermitean operator H = T + V for the Hamiltonian.
The operator proposed by Von Ross [9] was

T (x) =
1

4

(
mαpmβpmγ +mγpmβpmα

)
, (26)

α+ β + γ = −1. (27)

In (26) p is the momentum operator, m is the position-
dependent mass function, and α, β, and γ are real numbers
obeying the relation given in (27). Substituting the opera-
tor p = −i~d/dx in (26), the Schrödinger equation can be
rewritten as [10]

d2ψ

dx2
− m′

m

dψ

dx
+

[
1

2

(
r
m′′

m
− sm

′2

m2

)

+
2m

~2
(E − V (x))

]
ψ = 0.

(28)

In (28), r = α + γ, s = α(γ + 2) − γ(α + 2). More-
over, m′ = dm/dx and m′′ = d2m/dx2. Now, making the
substitution ψ (x) =

√
m (x)ξ (x) in (28), the Schrödinger

equation can be simplified to

~2

2me

d2ξ

dx2
= mrel (x) [E − Veff (x)] ξ = 0 (29)

Veff (x) = V (x)−

[
~2 (1 + r)

m′′

4m2

−~2
(

3

4
+
s

2

)
m′2

2m3

]
.

(30)

In (29) mrel(x) = m(x)/me. Its discretization using the
Numerov method is [11]

[
− ~2

2me
M−1A+ V

]
ψ = Eψ, (31)

M = (M−1 + 10M0 +M1) /12, (32)

M−1 =


0

mrel (x1) 0
. . . . . .

mrel (xn−1) 0

 ,

M1 =


0 mrel (x2)

0
. . .
. . . mrel (xn)

0

 .
(33)

In (31) and (32) the matrix A is given by (4), V is a di-
agonal matrix whose entries are the values of V eff(x) and
M0 is a diagonal matrix whose entries are the values of
mrel(x). Here we are going to use r = −1 and s = −3/2
(α = γ = −1/2, β = 0), which implies in Veff(x) = V (x),
and the mass position dependent Schrödinger equation is
simply given by

~2

2me

d2ξ

dx2
= mrel (x) [E − V (x)] ξ = 0. (34)

Here, we are going to solve (34) for the harmonic poten-
tial with a delta barrier in the center. Initially we consider the
following expression for the mass,

mrel (x) = 0.0665 + 0.0835x2. (35)

The squared modulus and first derivatives of the eigen-
functions ψ1, ψ3 and ψ5 are shown in Figs. 17 and 18, re-
spectively, while a comparison of the allowed energies for the
first eleven modes for harmonic potentials with and without
the delta barrier and variable mass is shown in Fig. 19.

Fig. 17. Squared modulus of the eigenfunctions ψ1, ψ3 and ψ5
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Fig. 18. First derivatives of the eigenfunctions ψ1, ψ3 and ψ5

Fig. 19. Energies for the first eleven modes of the harmonic poten-
tial with and without the delta barrier and mass variation. I – Delta
function and variable mass; II – Variable mass; III) Delta function

and constant mass; IV) Constant mass

Finally, we consider a Gaussian profile for the mass

mrel (x) = 1 + 0.67 exp
(
−x2

)
. (36)

The squared modulus and first derivatives of the eigen-
functions ψ1, and ψ3 are shown in Fig. 20, while a com-
parison of the allowed energies for the first ten modes for
harmonic potentials with and without the delta function and
mass variation is shown in Fig. 21.

Clearly, the energy of the modes grows more slowly when
the mass depends on the position. Furthermore, the energy
does not change linearly with the mode number as it happens
in the constant mass without a delta barrier case.

Fig. 20. Squared modulus and first derivatives of the eigenfunctions
ψ1 and ψ3

Fig. 21. Energies for the first ten modes of the harmonic potential
with and without the delta barrier and mass variation. I – Delta
function and constant mass; II – Constant mass; III) Delta barrier

and variable mass; IV) Delta barrier and variable mass

V. CONCLUSIONS

The numerical solution, via Numerov method, of the
Schrödinger equation with the delta barrier by simulating
the latter by a very thin and narrow rectangular barrier can
provide good results. Due to the finite height and width of the
pseudo-delta barrier, the results for the first two dozen modes
are more reliable. In general, the accuracy can be checked
seeing how good the boundary condition (8) is satisfied by
the numerical solutions found, as it was done in Figs 4, 8 and
13. In all the cases considered the presence of the delta barrier
changes the even modes and their energies. The odd modes
are changed only in the quantum well with three delta barr-
iers, since in this case the two lateral barriers are located in
positions where the wavefunction is not zero. These changes
are larger for low order modes (since the pseudo-delta barrier
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has finite height). In particular, the smooth behavior of the
allowed energies (parabolic for the infinite quantum well and
linear for the harmonic potential) is broken by the presence
of the delta barriers.
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