• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 31 (1–3) 2025 – in progress, 55–62

6 +∞ New Expressions for the Euler-Mascheroni Constant

Wolf Marek

Cardinal Stefan Wyszynski University
Faculty of Mathematics and Natural Sciences
ul. Wóycickiego 1/3, PL-01-938 Warsaw, Poland
E-mail: m.wolf@uksw.edu.pl

 
 
 
 
 
 

Received:

Received: 4 June 2025; revised: 30 July 2025; accepted: 31 July 2025; published online: 27 August 2025

DOI:   10.12921/cmst.2025.0000010

Abstract:

In the first part, we review some formulae for the Euler-Mascheroni constant γ. For four of these formulae, we present a comparison of computer determinations of these expressions with the actual value of γ. Next, we provide new formulae expressing the γ constant in terms of the Ramanujan-Soldner constant µ. By employing the cosine integral, we obtain another infinity of formulae for γ. Finally, we express γ in terms of π.

 
 
 
 
 
 

Key words:

cosine integral, Euler-Mascheroni constant, Ramanujan-Soldner constant

References:

[1]  J. Havil, Gamma: Exploring Euler’s Constant, Princeton University Press, Princeton, NJ (2003).

[2] J.C. Lagarias, Euler’s constant: Euler’s work and modern developments, Bulletin of the American Mathematical Society 50(4), 527–628 (2013).

[3]  J. Sondow, Criteria for Irrationality of Euler’s Constant, Proceedings of the American Mathematical Society 131(11), 3335–3345 (2003).

[4]  D.W.  DeTemple,  A  quicker  convergence  to  Euler’s  constant, The American Mathematical Monthly 100(5), 468–470 (1993).

[5] C. Mortici, On new sequences converging towards the Euler-Mascheroni constant, Computers and Mathematics with Applications 59(8), 2610–2614 (2010).

[6]  X. Gourdon, P. Sebah, Collection of formulae for the Euler constant (2008), http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.pdf.

[7] J. Choi, H.M. Srivastava, Integral Representations for the Euler-Mascheroni Constant γ, Integral Transforms and Special Functions 21(9), 675–690 (2010).

[8] G. Boros, V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press (2004).

[9] R.P. Brent, E.M. McMillan, Some New Algorithms for High-Precision Computation of Euler’s Constant, Mathematics of Computation 34(149), 305–312 (1980).

[10] K. Broughan, Equivalents of the Riemann Hypothesis, volume 1 and 2, Cambridge University Press (2017).

[11]  G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford Science Publications (1980).

[12]  M.W. Coffey, The stieltjes constants, their relation to the ηj coefficients, and representation of the Hurwitz zeta function, Analysis (Oldenbourg Wissenschaftsverlag) 30 (2010).

[13]  H.M. Edwards, Riemann’s zeta function, Pure and Applied Mathematics 58, Academic Press (1974).

[14] H. Davenport, Multiplicative Number Theory, Graduate Texts in Mathematics 74, Springer-Verlag, New York (1980).

[15]  Rubinstein’s, L-function calculator, http://doc.sagemath.org/html/en/reference/lfunctions/sage/lfunctions/lcalc.html.     

[16]  S.K. Sekatskii, S. Beltraminelli, D. Merlini, On equalities involving integrals of the logarithm of the Riemann ζ-function and equivalent to the Riemann hypothesis, Ukrainian Mathematical Journal 64(2), 247–261 (2012).

[17] C. Pomerance,  Recent developments  in primality  testing, The Mathematical Intelligencer 3(3), 97–105 (1981).

[18] S.S. Wagstaff, Divisors of Mersenne Numbers, Mathematics of Computation 40(161), 385–397 (1983).

[19] M.R. Schroeder, Number Theory In Science And Communication, With Applications In Cryptography, Physics, Digital Information, Computing, And Self-Similarity, Springer-Verlag New York, Inc (2006).

[20] D.W. Sweeney, On the Computation of Euler’s Constant, Mathematics of Computation 17(82), 170 (1963).

[21] A. Kawalec, Asymptotic formulas for harmonic series in terms of a non-trivial zero on the critical line, Computational Methods in Science and Technology, 161–166 (2019).

[22] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York (1964).

[23] B. Riemann, Gesammelte Mathematische Werke, Wissenschaftlicher Nachlass und Nachträge – Collected Papers, Springer-Verlag, Berlin, Heidelberg (1991).

[24] B.C. Berndt, Ramanujan’s Notebooks, Part IV, Springer Verlag (1994).

[25] PARI/GP, version 2.3.0, 64 bits (2018), http://pari.math.u-bor deaux.fr/.

[26] W. Rudin, Principles of mathematical analysis, McGraw-Hill Book Co., New York (1976).

[27] N.I. Fel’dman, A.B. Shidlovskii, The development and present state of the theory of transcendental numbers, Russian Mathematical Surveys 22(3), 1–79 (1967).

[28] A.J. MacLeod, Asymptotic expansions for the zeros of certain special functions, Journal of Computational and Applied Mathematics 145(2), 261–267 (2002).

[29] B.C. Berndt, Ramanujan’s Notebooks, Part I, Springer Verlag (1985).

[30] V.S. Adamchik, S. Wagon, π: A 2000-year search changes direction, Mathematica in Education and Research 5(1), 11–19 (1996).

[31] H. Cohen, R. Villegas, F. Fernando, D. Zagier, Convergence acceleration of alternating series, Experiment. Math. 9(1), 3–12 (2000).

 
 
 
 
 
 
  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_27_3_2021_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1–3) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST