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6 + ∞ New Expressions for the Euler-Mascheroni Constant
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Abstract: In the first part, we review some formulae for the Euler-Mascheroni constant γ. For four of these formulae, we
present a comparison of computer determinations of these expressions with the actual value of γ. Next, we provide new
formulae expressing the γ constant in terms of the Ramanujan-Soldner constant µ. By employing the cosine integral, we
obtain another infinity of formulae for γ. Finally, we express γ in terms of π.
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I. Introduction

The Euler-Mascheroni constant is defined by the follow-
ing limit:

γ = lim
k→∞

(
k∑

n=1

1

n
− log(k)

)
= 0.57721566490153286 . . . ,

(1)
see, e.g., [1, 2]. It is not known whether γ is irrational (see
[2, 3]). It is known that if γ is rational and equal to a simple
fraction p/q then q > 10242 080 (see [1, p. 97]).

The Euler-Mascheroni constant γ is the first element of
the sequence of the Stieltjes constants γn defined by

γn = lim
m→∞

[(
m∑

k=1

(log k)n

k

)
− (logm)n+1

n+ 1

]
. (2)

When n = 0 (which corresponds to the Euler-Mascheroni
constant γ = γ0), the numerator of the fraction in the first
summand in (2) is formally 00, which is taken to be 1. These
constants are the coefficients of the Laurent series for the
Riemann ζ(s) function:

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)
n

n!
γn (s− 1)

n
. (3)

The limit in (1) is very slowly convergent (like n−1), and
in [4] it was shown that a slight modification of (1):

γ = lim
k→∞

(
k∑

n=1

1

n
− log(k +

1

2
)

)
,

improves convergence to 1/n2. Currently, sequences con-
verging to γ much faster are known; see [5], which presents
a sequence converging to γ like n−6. There are numerous
formulae expressing γ as limits, series, integrals, or prod-
ucts; see [1] and, e.g., [2, 6, 7]. Here, we highlight the infin-
ity of formulae for γ [6, p. 4]:

γ =

n∑
k=1

1

k
−log(n)−

∞∑
k=2

ζ(k, n+ 1)

k
, n = 2, 3, . . . , (4)

where the Hurwitz zeta function is defined as:

ζ(s, k) =

∞∑
n=0

1

(n+ k)s
, ℜ(s) > 1 k ̸= −1,−2,−3 . . .

(5)
A second infinite set of formulae for γ is found in [8,
Eq. (9.3.10)]:

γ =

n∑
k=1

1

k
− log n−

∫ ∞

n

{x}
x2

dx , n = 1, 2, 3, . . . , (6)

where {x} is the fractional part of x.
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Tab. 1. Values of the product in (9) up to n = 1000, 10 000, . . . , 1013 (second column) and values from Mertens’s formula (third column),
their ratio (fourth column), and finite approximations to γ (last column). The fluctuations in the last digits of the computed values obtained

are possibly caused by irregularities in the prime distribution or by the accumulation of floating-point errors

n
∏

p<n(1 + 1/pn) 6eγ log(n)/π2 ratio γ(n)

103 _7.5094464 _7.4891425 1.0027111 0.57992110

104 _9.9849904 _9.9733461 1.0011675 0.57838053

105 12.4756558 12.4721158 1.0002838 0.57749746

106 14.9651229 14.9643917 1.0000489 0.57726252

107 17.4570890 17.4568441 1.0000140 0.57722769

108 19.9494269 19.9493052 1.0000061 0.57721977

109 22.4418428 22.4417674 1.0000034 0.57721703

1010 24.9342956 24.9342295 1.0000027 0.57721631

1011 27.4267504 27.4266917 1.0000021 0.57721581

1012 29.9192150 29.9191539 1.0000020 0.57721571

1013 32.4116846 32.4116161 1.0000021 0.57721578

The third example includes uncountable many formulae
for γ; see, e.g., [9]: for real r > 0

γ = lim
n→∞

∑∞
k=0{(

nk

k! )
r[
∑k

j=1
1
j − log(k)]}∑∞

k=0(
nk

k! )
r

. (7)

That this formula gives γ for each r > 0 means that the
derivative of the rhs with respect to r is zero. There are also
doubly uncountable formulae for γ. As the fourth example,
we present the formula (3.13) from [7]:

γ = r

∫ ∞

0

(
1

1 + xq
− exp(−xr)

)
dx

x
, q > 0, r > 0 .

(8)
The numerical value of the Euler-Mascheroni constant has
been calculated repeatedly to ever increasing decimal places;
see, e.g., [9]. The current world record (as of 14 June 2023)
is 700 000 000 000 decimal digits of γ and belongs to Jordan
Ranous and Kevin O’Brien (see link1).

The Euler-Mascheroni constant appears in numerous
places in number theory, including the theory of the Riemann
zeta function, for example in Nicolas’ and Robin’s criteria
for the Riemann Hypothesis (see, e.g., [10, vol.1, chapters
5 and 7]). One of the most remarkable appearances of the
γ constant is in F. Mertens’s two products over primes [11,
p. 351], one of which involves the constants π, e, γ (the
so-called “holy trinity”):

lim
n→∞

1

log(n)

∏
p<n

(
1 +

1

p

)
=

6eγ

π2
, (9)

from which we obtain

γ = log
[π2

6
lim
n→∞

1

log(n)

∏
p<n

(
1 +

1

p

)]
. (10)

With today’s computers, we can verify the accuracy of the
above relation. In the Tab. 1, we present a numerical test of
(9) alongside the values of γ(n) computed from finite prod-
ucts over primes:

γ(n) = log
[π2

6

1

log(n)

∏
p<n

(
1 +

1

p

)]
. (11)

We present these numerical calculations as an illustration of
(9), not as a method to compute γ, since more efficient algo-
rithms are known (see, e.g., [9]).

Another appearance of γ is found in the formula for the
average value of the divisor function d(n), which counts the
number of divisors of n, including 1 and n, as given by the
theorem proved by Dirichlet (see, e.g., [11, Th.320]):

1

n

n∑
k=1

d(k) = log n+ 2γ − 1 +O
( 1√

n

)
. (12)

Values of γ obtained from the formula above for n =
= 215, . . . , 223 are presented in Tab. 2.

Relation (12) suggests that there is a connection between
γ and the distribution of primes. Another example of this
relation is found in [12, Corollary 1]:

γ =
1

2

∞∑
n=1

(
1− Λ(n)

n

)
, (13)

where the von Mangoldt function Λ(n) is defined as

Λ(n)=

{
log p, if n=pk for some prime p and integer k≥1,

0, otherwise.
(14)

1 https://ehfd.github.io/world-record/euler-mascheroni-constant

https://ehfd.github.io/world-record/euler-mascheroni-constant
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Tab. 2. Values of γ obtained from (12) for n = 220, 222, . . . , 232

n
∑n

k=1 d(k) γ from (12)

220 = 1 048 576 14 698 342 0.57724382397818362

222 = 4 194 304 64 607 782 0.57722880551235453

224 = 16 777 216 281 689 074 0.57722242972001786

226 = 67 108 864 1 219 788 256 0.57721736522986625

228 = 268 435 456 5 251 282 902 0.57721609681052878

230 = 1 073 741 824 22 493 653 324 0.57721585470866853

232 = 4 294 967 296 95 928 700 948 0.57721570434208188

The rhs of (13) is a sum of two divergent series: the har-
monic series and a decimated harmonic series where, instead
of ones in the nominator values of Λ(n) > 1 appear; see
Tab. 3.

Tab. 3. Values of γ obtained from (13) for n = 10, . . . , 197 com-
pared with the actual value of the Euler-Mascheroni constant

n Eq. (13) ratio

10 000 0.576533359060 1.001183462901

100 000 0.576946987410 1.000465688352

1 000 000 0.577417595935 0.999650285972

10 000 000 0.577287376546 0.999875778257

A surprising appearance of γ is in the “harmonic” sum
of the reciprocals of the non-trivial zeros ρ of the Riemann
zeta function [13, p. 67 and p. 159], [14, pp. 80–82]:∑

ρ

1

ρ
= 1+

1

2
γ− 1

2
log(4π) = 0.023095708966 . . . (15)

Above, the three constants π, e, γ appear: e is hidden in
the natural logarithm. The sum (15) is real and conver-
gent when zeros ρ and the complex conjugate ρ are paired
and summed according to the increasing absolute values
of the imaginary parts of ρ. Several years ago, using the
L-function calculator written by Michael Rubinstein (see
[15]), we calculated 100 000 000 imaginary parts of zeros
of ζ(s); the last obtained zero has the value ρ100 000 000 =
= 1

2 + ı42653549.7609515. In Tab. 4, we present ap-
proximations to γ obtained from (15) after summing over
1000, 10 000, . . . , 100 000 000 zeros of the zeta function.

Another connection with the Riemann zeta function ζ(s)
is given by the astonishing fact: the Riemann Hypothesis is
true iff the following relation holds (see [16]):

1

π

∫ ∞

0

2t arg[ζ(1/2 + it)]

(1/4 + t2)2
dt = γ − 3 . (16)

The largest known prime numbers are of the form 2p− 1
where p is also a prime; these are called Mersenne primes

(see, e.g., https://www.mersenne.org/). In [17, p. 101],
[18, p. 388] (see also [19, §3.5]), the Lenstra-Pomerance-
Wagstaff conjecture was formulated: if Mn denotes the
nth Mersenne prime, then Mn grows doubly exponentially
with n:

log2 log2 Mn ∼ ne−γ . (17)

The presence of γ here comes from Mertens’s result (9).
In Fig. 1, we compare the Lenstra-Pomerance-Wagstaff con-
jecture with all 51 currently known Mersenne primes (link2).
The least squares fit yields a line with a slope of 0.54, which
leads to a rather poor value 0.61 for γ.

Fast-converging formulae for γ were presented in [9];
these are the most commonly utilized formulae for high-
precision numerical calculations of γ.

In this paper, we present some new formulae for γ ob-
tained by using special values of the arguments of the loga-
rithmic and cosine integrals. A similar idea appeared in [20],
where the series for the exponential integral was used to cal-
culate γ up to 3566 decimal places. A few of these new ex-
pressions represent the Euler-Mascheroni constant as the dif-
ference of two numbers, one of which is transcendental. This
offers hope for proving the irrationality and perhaps even the
transcendence of γ.

Fig. 1. Plot illustrating the Lenstra-Pomerance-Wagstaff conjec-
ture. The least-squares fit was performed on all known Mn and
is given by 0.54n + 1.31, which yields a rather poor value for γ

of 0.61

An astonishing formula was found by A. Kawalec [21],
who expressed γ in terms of the imaginary parts tl of the
nontrivial zeros of the Riemann zeta function on the critical
line ζ( 12 + itn) = 0:

2 https://www.mersenne.org/

https://www.mersenne.org/
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γ= lim
k→∞

[
2

k∑
n=1

k∑
m=n+1

(−1)m(−1)n+1

√
mn

cos
(
tl log(m/n)

)
+

− log(k)

]
, l = 1, 2, 3, . . .

(18)
There is an infinitude of formulae, as there are infinitely
many nontrivial zeta zeros. The above formula does not de-
pend on the Riemann Hypothesis: if there are any zeros off
the critical line, they do not enter (18).

II. Logarithmic Integral

The logarithmic integral is defined for all positive real
numbers x ̸= 1 by the definite integral

li(x) ≡


p.v.

∫ x

0

du

log(u)
, for x > 1,∫ x

0

du

log(u)
, for 0 < x < 1,

(19)

where p.v. stands for the Cauchy principal value around
u = 1:

p.v.

∫ x

0

du

log(u)
= lim

ϵ→0

(∫ 1−ϵ

0

du

log(u)
+

∫ x

1+ϵ

du

log(u)

)
.

(20)
There is a series giving the logarithmic integral li(x) for

all x > 1 (see [22, formulae 5.1.3 and 5.1.10]):

li(x) = γ + log log x+

∞∑
n=1

logn x

n · n!
for x > 1. (21)

This series is quickly convergent because it has nn! in
the denominator, which eventually overwhelms the logn(x)
term in the numerator. The above expansion was known to
C.F. Gauss and F.W. Bessel; see the remarks by R. Dedekind
after the famous paper “Über die Anzahl der Primzahlen
unter einer gegebenen Grösse” by B. Riemann in [23,
p. 168].

Tab. 4. Values of γ obtained from (15) after summing over n =
= 1000, 10 000, . . . , 100 000 000 zeros of ζ(s)

n γ

1 000 0.5757765

10 000 0.5769463

100 000 0.5771715

1 000 000 0.5772091

10 000 000 0.5772147

100 000 000 0.5772155

After a change of variables, a variant of the above series
is given by:∫ ∞

x

e−t

t
dt = −γ − log x+

∞∑
n=1

(−1)n−1xn

n · n!
. (22)

This was used in [20] for large x > 0, when the lhs of the
above equation is practically zero (in fact, it is O(e−x/x)),
to compute 3566 digits of γ, see also [9].

The logarithmic integral takes the value 0 at only one real
number which is denoted by µ and called the Ramanujan-
Soldner constant ∫ µ

0

du

log u
= 0 , (23)

see, e.g., [24, entry 14, p. 126, Eq. (11.3)], and its numerical
value is:

µ = 1.45136923488338105028396848589202745 . . .

Thus, for x > µ, we have:

li(x) =

∫ x

µ

du

log(u)
. (24)

Inserting x = µ > 1 into (21), we obtain the first formula ex-
pressing the Euler-Mascheroni constant via the Ramanujan-
Soldner constant:

γ = − log logµ−
∞∑

n=1

lognµ

n · n!
. (25)

The constant logµ = 0.37250741078136663446 . . . appear-
ing here is the zero of the exponential integral Ei(x); see
(A1). The series in (25) is very quickly convergent. Using
PARI [25], we verified that summing (25) up to only n = 20
reproduces 31 digits of γ. In the Appendix, we provide the
script to check (25) to any desired number of digits. In con-
trast, calculating (1) at k = 1 000 000 yields only 5 digits
of γ.

An even faster-converging series was discovered by Ra-
manujan [24, p. 130]:∫ x

µ

du

log u
= γ + log log x+

+
√
x

∞∑
n=1

(−1)n−1(log x)n

n! 2n−1

⌊(n−1)/2⌋∑
k=0

1

2k + 1
, for x > 1.

(26)
Putting here x = µ, we obtain a second formula for the
Euler-Mascheroni constant:

γ = − log logµ+
√
µ

∞∑
n=1

(−1)n(logµ)n

n! 2n−1

⌊(n−1)/2⌋∑
k=0

1

2k + 1
.

(27)
We verified using PARI that summing the series above to
n = 20 reproduces correctly 37 digits of γ.

Using x = e in (21) greatly simplifies the series, leading
to the third expression for the Euler-Mascheroni constant:

γ =

∫ e

µ

du

log u
−

∞∑
n=1

1

n · n!
:= α− β , (28)
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where the numbers

α :=

∫ e

µ

du

log u
= 1.89511781635593675546652 . . . ,

(29)

β :=

∞∑
n=1

1

n · n!
= 1.31790215145440389486 . . . (30)

The number β is irrational by the same reasoning which
proves the irrationality of e =

∑∞
n=0 1/n! (see, e.g., [26,

p. 65]), which can be repeated here mutatis mutandis. In fact,
from the Siegel-Shidlovsky theorem [27, see Eq. 5.2 for
k = 1], it follows that β (30) is transcendental.

Putting x = e in (26) yields the fourth expression for the
Euler-Mascheroni constant:

γ =

∫ e

µ

du

log u
+
√
e

∞∑
n=1

(−1)n

n! 2n−1

⌊(n−1)/2⌋∑
k=0

1

2k + 1
. (31)

Finally, let us note that in [1], at several places
(e.g., pp. 52, 104), we find that Euler expressed hope that γ
is the logarithm of some important number. Above, we have
presented two series for γ in terms of the logarithm of the
Ramanujan-Soldner constant µ.

III. Cosine Integral

Many special functions involve the Euler-Mascheroni
constant in their expansions. The cosine integral function
Ci(x) for x > 0 has a series expansion also containing γ
(see, e.g., [22, §5.2, formula 5.2.16]):

Ci(x) = −
∫ ∞

x

cosu

u
du = γ + log x+

∞∑
n=1

(−x2)n

2n(2n)!
=

= γ + log x+

∞∑
n=1

(−x2)n

2n+1nn!(2n− 1)!!
,

(32)
because (2n)! = 2nn!(2n − 1)!!, where the odd factorial
(2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1). Using x = 1, we obtain
the fifth expression for the Euler-Mascheroni constant:

γ = −
∫ ∞

1

cosu

u
du+

∞∑
n=1

(−1)n−1

2n(2n)!
, (33)

where:∫ ∞

1

cosu

u
du = −0.3374039229009681346626 . . . , (34)

and

∞∑
n=1

(−1)n−1

2n(2n)!
= 0.2398117420005647259439 . . . (35)

Again, γ can be expressed simply in terms of
two other numbers. The cosine integral Ci(x) has in-
finitely many zeros that do not have individual names
and are non-periodic. They are usually denoted by
ck (see [28, Eq. (9)]). The first zeros are c0 =
= 0.61650548562 . . . , c1 = 3.38418042255 . . . , c2 =
= 6.42704774405 . . . , . . . In [28], A.J. MacLeod provides
the asymptotic expansion for these zeros:

ck ≈ kπ +
1

kπ
− 16

3(kπ)3
+

1673

15(kπ)5
+

− 507746

105(kπ)7
+

111566353

315(kπ)9
. . .

(36)

By substituting any specific zero ck into (32), we obtain an
infinity of expressions for γ

γ = −
∞∑

n=1

(−c2k)
n

2n(2n)!
− log ck , k = 0, 1, 2, . . . (37)

In Tab. A1, we present values of γ obtained from this for-
mula using ck calculated from (36). In the last column, the
differences between the values in third column and γ are
given.

Fig. 2. The double-logarithmic plot of lhs of Eq. (41) for k =
= 1000, 2000, . . . , 8000, 16 000, 32 000, 64 000

From the MacLeod formula (36), we see that the large
zeros of Ci(x) approach the zeros of sin(x) =

∫
cos(x)dx:

ck ∼ kπ for large k. Thus, we have our sixth formula for the
Euler-Mascheroni constant:

γ = lim
k→∞

( ∞∑
n=1

(−1)n−1(kπ)2n

2n(2n)!
− log(kπ)

)
. (38)
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Denoting x = kπ, the above formula can also be written as

γ = lim
x→∞

( ∞∑
n=1

(−1)n−1x2n

2n(2n)!
− log(x)

)
. (39)

In [29, p. 98], we found a similar formula obtained by
S. Ramanujan:

γ = lim
x→∞

( ∞∑
n=1

(−1)n−1xn

n!n
− log(x)

)
. (40)

It appears to be a subtle problem to reconcile
Eqs. (39) and (40). Formula (39) in some sense resem-
bles the original definition (1). Using PARI we com-
puted the expression in the large parentheses in (38) for
k = 1000, 2000, 4000, 8000, . . . , 64 000. For example, for
k = 64 000, the expression in the large parentheses on the
rhs of (38) gives 0.577215664926 . . ., i.e., it reproduces cor-
rectly the first 10 digits of γ. The differences between γ and
the values obtained from (38) for the aforementioned set of k
were perfectly arranged on a straight line on the double loga-
rithmic plot (see Fig.2). A least-squares fit gave the equation
of the line as 0.101321k−1.9999, which suggests that:∣∣∣∣∣γ + log(kπ)−

∞∑
n=1

(−1)n−1(kπ)2n

2n(2n)!

∣∣∣∣∣ = 0.1013211

k2
.

(41)
In [22], we found the asymptotic expansion of Ci(x); see
formulae (5.2.9), (5.2.35), and (5.2.34):

Ci ∼ 1

x

(
1− 2!

x2
+

4!

x4
− 6!

x6
+ . . .

)
sin(x)+

+
1

x2

(
1− 3!

x2
+

5!

x4
− 7!

x6
+ . . .

)
cos(x) .

(42)

Putting the above x = kπ, we obtain:∣∣∣∣∣γ −
(
− log(kπ)−

∞∑
n=1

(−1)n(kπ)2n

2n(2n)!

)∣∣∣∣∣ ∼ 1

π2k2
, (43)

and 1/π2 = 0.1013211836 . . ., which agrees with the con-
stant on the rhs of (41).

Concluding remarks: We believe that the existence of
countable many formulae for a given constant is a necessary
condition for its irrationality, whereas the existence of un-
countable many formulae is a necessary condition for tran-
scendence. For example, there is an expression for π depend-
ing on arbitrary complex number z (see [30, not labelled for-
mulae on top of p. 15]):

π =

∞∑
k=0

(
z − 4

4k + 3
+

z + 4

4k + 1
+

z

4k + 4
− 3z

4k + 2

)
.

(44)
The fact that, for each z ∈ C, the value of the rhs is constant
means that the derivative of the rhs with respect to z is zero.
In fact, the Cauchy-Riemann equations should be satisfied.

However, the existence of infinitely many expressions
for a given number r ∈ R is not sufficient for irrational-
ity. As a counterexample, we can give the following infinite
sequence of telescoping series:

1 =

∞∑
n=1

(n+ 1)k − nk

nk(n+ 1)k
, k = 1, 2, 3, . . .

Here is a less trivial example:

1

2
= sin(

π

6
+ 2kπ) =

∞∑
n=0

(−1)n(π/6 + 2kπ)2n+1

(2n+ 1)!
,

k = 0,±1,±2, . . .

As for γ, there exist uncountable many expressions of the
form given in (7), which provides a strong argument that γ
is not only irrational but even transcendental.
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Appendix

Below is a simple PARI/GP script checking Eq. (25) to any arbitrary accuracy declared by \p precision. In the example
shown, it is set to 2222. The output demonstrates agreement between the lhs and rhs of (25) up to the number of digits
dictated by precision. The computation takes only a fraction of a second.

allocatemem()
\p 2222
Soldner=solve(x=1.4, 1.5, real(eint1(-log(x))));
tmp=log(Soldner);
ss=suminf(n=1, tmp^n/(n*n!));
write("EMRS.txt", Euler+log(tmp)+ss);

Tab. A1. Values of expression (37) when for ck the series (36) are substituted for k = 10, 20, . . . , 100

k ck from Eq. (36) Eq. (37) for this ck |Eq. (37) for this ck − γ|

10 31.447589011629313 0.5772156649004098 1.123× 10−12

20 62.847747177749027 0.5772156649015328 1.953× 10−17

30 94.258383581485718 0.5772156649015328 2.888× 10−20

40 125.67166120666795 0.5772156649015328 2.657× 10−22

50 157.08599750231211 0.5772156649015328 6.519× 10−24

60 188.50086358429127 0.5772156649015328 2.871× 10−25

70 219.91603253410894 0.5772156649015328 1.771× 10−26

80 251.33139082491842 0.5772156649015328 1.180× 10−27

90 282.74687536370536 0.5772156649015328 2.181× 10−29

100 314.16244828586940 0.5772156649015328 2.861× 10−29
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In the above script, we used the fact that the logarithmic integral is related to the exponential integral Ei(x); see, e.g., [22,
formula (5.1.3)]:

li(x) = Ei(log x), x > 1 , (A1)

where

Ei(x) =≡


−p.v.

∫ ∞

−x

e−t

t
dt, for x > 0,

−
∫ ∞

−x

e−t

t
dt, for x < 0,

(A2)

and the principal value is needed to avoid the singularity of the integrand at t = 0. The logarithmic integral is not implemented
in PARI, whereas the exponential integral is implemented as eint1(x). Running the above script produces the number
4.27× 10−2235. To check (27), modify the last lines as follows:

ss=suminf(n=1, (-1)^n*tmp^n/(2^(n-1.0)*n!)*
sum(k=0, floor((n-1)*0.5), 1.0/(2.0*k+1.0)));

write("EMRS.txt", Euler+log(tmp)-sqrt(Soldner)*ss);

This time, the output obtained was 2.7328× 10−2233.
The Eq. (33) can be checked in PARI using the following commands:

allocatemem()
\p 2222
tmp=sumalt(n=1, (-1)^(n-1)/(2*n*(2*n)!));
c_i=intnum(u=1, [oo, I], cos(u)/u);
print(Euler+c_i-tmp);

We provide further explanations: PARI contains the numerical routine sumalt for summing infinite alternating series
in which the extremely efficient algorithm of Cohen, Villegas, and Zagier [31] is implemented; in PARI, oo denotes infinity
+∞; intnum(·) is the function for numerical integration, and the flag k*I (I= ı, i.e. ı2 = −1) tells the procedure that
the integrand is an oscillating function of the type cos(kx), with k = 1 in this case. After a few minutes, the computation
yielded 1.42335× 10−2235. This result shows the power of PARI’s procedures: the value of the cosine integral at 1 is indeed
calculated numerically without using the expansion (32) and the value of γ, so the circular reasoning (tautology) is avoided.

Marek Wolf obtained PhD degree in Physics (1982) and habili-
tation (1993) at the Wroclaw University, where he was employed
till 2011. Since 1984 he has been doing computer experiments in
physics and mathematics. In 1991 and 1993 he was a research fel-
low at the Center for Polymer Studies at the Boston University.
Now he is a member of the Faculty of Mathematics and Natu-
ral Sciences, College of Sciences at the Cardinal Stefan Wyszyn-
ski University in Warsaw. In April 2022 he became a grandfather.
His hobby is photography, jazz and classic music.

CMST 31(1–3) 55–62 (2025) DOI:10.12921/cmst.2025.0000010


	Introduction
	Logarithmic Integral
	Cosine Integral

