• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 29 (1–4) 2023, 17–20

Numerical Determination of a Certain Mathematical Constant Related to the Mobius Function

Wolf Marek

Cardinal Stefan Wyszynski University
Faculty of Mathematics and Natural Sciences
ul. Wóycickiego 1/3, PL-01-938 Warsaw, Poland
E-mail: m.wolf@uksw.edu.pl

Received:

Received: 18 April 2023; revised: 16 May 2023; accepted: 17 May 2023; published online: 7 June 2023

DOI:   10.12921/cmst.2023.0000008

Abstract:

We calculated numerically the value of some constant which can be regarded as an analogue of the Euler-Mascheroni constant.

Key words:

convergent and divergent series, Möbius function, Stjelties constants

References:

[1] T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York (2010). Undergraduate Texts in Mathematics.

[2]  R.G. Ayoub, An Introduction to the Analytic Theory of Numbers, AMS (2006).

[3]  W.E. Briggs, S. Chowla, The power series coefficients of ζ(s), The American Mathematical Monthly 62(5), 323–325 (1955).

[4]  J.B. Christopher, The asymptotic density of some k-dimensional sets, American Mathematical Monthly 63, 399 (1956).

[5]  G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford Science Publications (1980).

[6] J. Havil, Gamma: Exploring Euler’s Constant, Princeton University Press, Princeton, NJ (2003).

[7] J.C. Lagarias, Euler’s constant: Euler’s work and modern developments, Bulletin of the American Mathematical Society 50(4), 527–628 (2013).

[8] K. Mas´lanka, M. Wolf, Are the Stieltjes constants irrational? Some computer experiments, Computational Methods in Science and Technology 26(3), 77–87 (2020).

[9] PARI/GP, version 2.3.0, 64 bits (2018). Available from http://pari.math.u-bordeaux.fr/.

[10] W. Rudin, Principles of mathematical analysis, McGraw-Hill Book Co., New York, 3rd ed. (1976). International Series in Pure and Applied Mathematics.

[11] J. Sondow, Criteria for Irrationality of Euler’s Constant, Proceedings of the American Mathematical Society 131(11), 3335–3345 (2003).

[12] E.C. Titchmarsh, The Theory of the Riemann Zeta-function, The Clarendon Press Oxford University Press, New York, 2nd ed. (1986). Edited and with a preface by D.R. Heath-Brown.

[13] M. Wolf, Some remarks on the Báez-Duarte criterion for the Riemann Hypothesis, Computational Methods in Science and Technology 20(2), 39–47 (2014).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST