• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 21 (3) 2015, 161-164

Time-Reversible Ergodic Maps and the 2015 Ian Snook Prizes

Hoover Wm.G. , Hoover C.G.

Ruby Valley Research Institute
Highway Contract 60, Box 601
Ruby Valley, Nevada 89833
E-mail: hooverwilliam@yahoo.com

Received:

Received: 03 July 2015; accepted: 06 July 2015; published online: 24 August 2015

DOI:   10.12921/cmst.2015.21.03.003

Abstract:

The time reversibility characteristic of Hamiltonian mechanics has long been extended to nonHamiltonian
dynamical systems modeling nonequilibrium steady states with feedback-based thermostats and ergostats. Typical solutions
are multifractal attractor-repellor phase-space pairs with reversed momenta and unchanged coordinates, (q, p) ←→ (q, −p).
Weak control of the temperature, ∝ p2 and its fluctuation, resulting in ergodicity, has recently been achieved in a three-
dimensional time-reversible model of a heat-conducting harmonic oscillator. Two-dimensional cross sections of such
nonequilibrium flows can be generated with time-reversible dissipative maps yielding æsthetically interesting attractor-
repellor pairs. We challenge the reader to find and explore such time-reversible dissipative maps. This challenge is the 2015
Snook-Prize Problem.

Key words:

algorithms, chaos, ergodicity, maps, mapsergodicity, time-reversible flows

References:

[1] W. G. Hoover and C. G. Hoover, Simulation and Control of Chaotic Nonequilibrium Systems (World Scientific Publishers, Singapore, 2015).
[2] H. A. Posch and Wm. G. Hoover, Time-Reversible Dissipative Attractors in Three and Four Phase-Space Dimensions, Physical Review E 55, 6803-6810 (1997).
[3] W. G. Hoover, J. C. Sprott, and C. G. Hoover, Nonequilibrium Molecular Dynamics and Dynamical Systems Theory for Small Systems with Time-Reversible Motion Equations, Molecular Simulation (in press, 2015).
[4] W. G. Hoover, O. Kum, and H. A. Posch, Time-Reversible Dissipative Ergodic Maps, Physical Review E 53, 2123-2129 (1996).
[5] J. Kumicák, Irreversibility in a Simple Reversible Model, Physical Review E 71, 016115 (2005), arχiv nlin/0510016.
[6] L. Ermann and D. L. Shepelyansky, Arnold Cat Map, Ulam Method, and Time Reversal, arχiv1107.0437.
[7] W. G. Hoover and C. G. Hoover, Comparison of Very Smooth Cell-Model Trajectories Using Five Symplectic and Two Runge-Kutta Integrators, Computational Methods in Science and Technology 21 (to appear, 2015), arχiv 1504.00620.
[8] D. Faranda, Analysis of Roundoff Errors with Reversibility Test as a Dynamical Indicator, arχiv 1205.3060.

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_23_3_2017_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST