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Abstract: The time reversibility characteristic of Hamiltonian mechanics has long been extended to nonHamiltonian
dynamical systems modeling nonequilibrium steady states with feedback-based thermostats and ergostats. Typical solutions
are multifractal attractor-repellor phase-space pairs with reversed momenta and unchanged coordinates, (q, p)←→ (q,−p).
Weak control of the temperature, ∝ p2 and its fluctuation, resulting in ergodicity, has recently been achieved in a three-
dimensional time-reversible model of a heat-conducting harmonic oscillator. Two-dimensional cross sections of such
nonequilibrium flows can be generated with time-reversible dissipative maps yielding æsthetically interesting attractor-
repellor pairs. We challenge the reader to find and explore such time-reversible dissipative maps. This challenge is the 2015
Snook-Prize Problem.
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I. TIME-REVERSIBLE NONEQUILIBRIUM FLOWS

The microscopic gist of the macroscopic Second Law is
often pictured as a system’s seeking out more phase-space
states. So it seems a bit odd that the idealized nonequilibrium
steady states generated by molecular dynamics behave in
the opposite way [1]. The (q, p) states from such atomistic
simulations soon become constrained to an ever-shrinking
strange attractor. The compensating additional heat-reservoir
states are never seen explicitly. Instead they are modelled by
time-reversible friction coefficients. These coefficients con-
trol temperature or energy and induce steady-state behavior
in the system under study.

Unlike real life, the underlying Laws of physics are mostly
time-reversible, which means it is puzzling that physics
gives a good accounting of real-world observations. Time-
reversible mechanical models (molecular dynamics) provide
clear examples of this conundrum. To illustrate the irre-
versible behavior of such time-reversible models let us con-
sider the simplest case, a one-dimensional harmonic oscillator
(with unit mass and force constant ) exposed to a temperature
gradient [2, 3], T = T (q). The oscillator’s motion is sub-

ject to a time-dependent friction coefficient ζ(p) imposing
weak control over the oscillator’s kinetic energy 〈K〉 and its
fluctuation, 〈K2〉 − 〈K〉2. This oscillator model [2] gener-
ates a three-dimensional “flow” satisfying the three ordinary
differential equations of motion:

q̇ = p; ṗ = −q − ζ[Ap+B(p3/T )];

ζ̇ = A[(p2/T )− 1] +B[(p4/T 2)− 3(p2/T )].
(1)

The superior dots in the motion equations indicate comoving
time derivatives.

At thermal equilibrium where T is constant the parame-
ters (A,B) are chosen to promote the control of the second
and fourth velocity moments [3]:

(A,B) = (0.05, 0.32) −→ 〈(p2/T ), (p4/T 2)〉 = (1, 3).

From the visual standpoint this parameter choice appears to
provide an ergodic coverage of the oscillator phase space.
Liouville’s continuity equation in phase space can be used to
show that these motion equations are consistent with Gibbs’
canonical distribution;

f(q, p, ζ)ε=0 ∝ e−q
2/2T e−p

2/2T e−ζ
2/2.
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Away from equilibrium the heat-reservoir temperature
field T = 1+ε tanh(q) is an explicit function of the oscillator
coordinate q and ε is the maximum value of the temperature
gradient.

Fig. 1. These cross sections can be viewed as generated by time-
reversible “dynamical maps”, advancing the dynamics from one
penetration of the ζ = 0 plane to the next. These (q, p) phase-space
cross sections for the conducting oscillator correspond to four values
of the maximum temperature gradient: ε = 0.0, 0.1, 0.2, and 0.3.

Both q and p range from −4 to +4 in all these cross sections

See Fig. 1 for sample numerical (q, p) cross sections of
the three-dimensional flow in (q, p, ζ) space. The (q, p) points
are plotted whenever ζ changes sign. Notice that the equations
of motion for this heat-conduction model are time-reversible.
To see this start out with a solution of the equations forward
in time, q(t), p(t), ζ(t). Then change the signs of the momen-
tum p, ζ , as well as the direction of time, (+d/dt→ −d/dt).
These steps provide a new “reversed” solution of exactly the
same motion equations.

The nonequilibrium (q, p) cross-sections with ε > 0
shown in Fig. 1 look like inhomogenous (or “multifractal”)
strange attractors. And they are. In these flows, as in a wide
variety of time-reversible nonequilibrium steady states, the
fractal strange attractors satisfy the Second Law of Thermody-
namics, with an overall hot-to-cold heat current. The reversed
flows, topologically similar fractals, are mechanically un-
stable, with exponentially growing phase volume, and with
a heat-flow direction violating the second law. These repellor
states are unobservable numerically due to this (Lyapunov)
instability, and can only be collected by storing, and then
reversing, a time series of attractor states [1].

II. EQUIVALENT TIME-REVERSIBLE MAPS [4, 5]

The construction of the flow cross-sections is equiva-
lent to applying a time-reversible “map”M(q, p) from one

penetration of the zero ζ plane to the next, (qn+1, pn+1) =
M(qn, pn). Such two-dimensional maps provide relatively
simple (two-dimensional rather than three) pictures of the
chaos generated by the conducting oscillator.

Because the penetrations of the differential equations are
proportional to the “flux” through the sampling plane ζ = 0
at (q, p, 0), rather than just the “density”, there are unoccu-
pied white “nullclines” in the cross sections wherever the flux
ζ̇(q, p)f(q, p, 0) vanishes.

“Maps” have long been used in dynamical systems theory
to illustrate and explain ergodicity (closely approaching all of
a system’s states) and Lyapunov instability (the exponentially-
fast growth of small perturbations). Arnold’s Cat Map [6] and
the Baker Map are the best-known examples. For clarity let
us recall the action of the Baker Map.

Fig. 2. One iteration of the Baker Map is illustrated here for a grid
of 1442 (q, p) points. The square shown at the left is first squeezed
twofold in the q = p direction and stretched twofold in the perpen-
dicular direction. After a cut along the q = p line the two halves
are joined together in the new arrangement shown at the right. The
changed spacings of the points reflects the squeezing and stretching

induced by the map

III. THE ROTATED TIME-REVERSIBLE
BAKER MAP

In the dynamical systems literature the discontinuous
“Baker Map”, composed of area-preserving cutting and knead-
ing operations, provides a simple illustration of “chaos”, the
exponentially diverging growth induced by the mapping of
small perturbations. The familiar “Cat Map” [3] is another
well-known discontinuous mapping of the unit square into
itself. Both these map types illustrate Lyapunov instability,
δn+1 ∝ δn, where the proportionality constant exceeds unity,
leading to divergence.

Many-to-one mappings, such as xn+1 = αxn; α < 1,
in the presence of chaos are enough to produce the strange
attractors associated with nonequilibrium steady states. Even
one-to-one volume-preserving mappings, as in the simplest
Baker Map above, are enough to generate Lyapunov unstable
chaos. In the equilibrium Baker Map each half of a 2 × 2
square is mapped from a 1 × 2 rectangle to two (1/2) × 2
disjoint rectangles. In order to follow our criterion for time
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reversibility – detailed in the next Section – we use a rotated
version of the Baker Map, illustrated in Fig. 2. The mapping
is as follows:

if(q.lt.p) then
qnew = +1.25d00*q - 0.75d00*p

+ dsqrt(1.125d00)
pnew = -0.75d00*q + 1.25d00*p

- dsqrt(0.125d00)
endif
if(q.gt.p) then
qnew = +1.25d00*q - 0.75d00*p

- dsqrt(1.125d00)
pnew = -0.75d00*q + 1.25d00*p

+ dsqrt(0.125d00)
endif

The result of 100,000 iterations of this map is a near uniform
covering of the 2× 2 square, as is shown in Fig. 3.

Fig. 3. The uniform distribution of 100,000 iterates of the Baker Map
with an initial point (q, p) = (0.5, 0.0) are plotted here. The uni-
form area conservation of the Map is analogous to the equilibrium

phase-volume conservation described by Liouville’s Theorem

The dissipative Baker Map [4, 5], with changes in area as
well as shape, is a better model for nonequilibrium molecular
dynamics and statistical mechanics. In those disciplines the
phase-space density responds to heat transfer. In the oscillator
example above the action of a heat reservoir with tempera-
ture T (q) is represented by the time-reversible frictional force,
−ζ[Ap+B(p3/T )]. The resulting change in comoving phase
volume ⊗ follows from the continuity equation:

(⊗̇/⊗) = (∂q̇/∂q) + (∂ṗ/∂p) + (∂ζ̇/∂ζ) =

=− ζ[A+ 3B(p2/T )].
(2)

The dissipative Baker Map is deterministic, time-reversible,
and likewise produces mirror-image attractor-repellor mul-
tifractal pairs. These are the same qualities associated with

nonequilibrium molecular dynamics algorithms ever since
the early 1970s, though they passed unrecognized until the
1980s [1].

IV. NEW MAPS – IAN SNOOK PRIZES FOR 2015

The conducting oscillator is just one example of the de-
terministic, time-reversible flows that represent a nonequilib-
rium steady state with a chaotic multifractal attractor. The
time-reversed state, with the momentum, friction coefficient,
and the time all changed in sign, is an exactly similar mirror-
image multifractal structure, an unstable zero-measure repel-
lor. More complicated maps with these same properties can be
constructed by concatenating time-symmetric combinations
of reversible mappings {M} like

M1M2M3M4M3M2M1.

where each of the mappings satisfies the time-reversibility
criterion:

(q, p) = TMTM(q, p),

with the four operations performed from right to left. Here
T indicates the time-reversal operation (q, p) −→ (q,−p).
This reversibility criterion states that the sequence of four
steps – [1] iterate forward; [2] reverse velocities; [3] iterate
backward; [4] reverse velocities – returns to the original (q, p)
state. The simplest time-symmetric mappings satisfying this
criterion are shears and reflections. [4] It is interesting to note
that numerical implementations almost never return exactly
to their initial state after the four-step sequence above. In fact
the lack of an exact return is a (somewhat misleading) [7]
measure of algorithmic accuracy [8].

The similarities between small-system dynamics and
macroscopic dissipative behavior motivate the study of rela-
tively simple flows and maps capable of generating the com-
plexity associated with irreversible strange attractors. At the
same time this complexity often exhibits a compelling beauty.
The prototypical Cat and Baker maps are relatively simple,
but their discontinuities are not at all representative of the
attractor types shown in Fig. 1. The time is ripe for a fresh
look at such problems.

The Snook Prize problem for 2015 is to formulate and
analyze an interesting time-reversible ergodic map of the unit
square into itself. It is desirable that the map generate a mul-
tifractal attractor with relevance to statistical mechanics. The
detailed Terms and Conditions can be found on the CMST
website, cmst.eu . The author(s) of the most interesting entry
received prior to 1 January 2016 will be awarded the $500
US Snook Prize as well as the Ian Snook Additional Prize of
$500 US sponsored by the Publisher of this journal.
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