• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 28 (3) 2022, 87–107

The Theory of Thermoelasticity with Double Porosity and Microtemperatures

Kansal Tarun

Markanda National College
Department of Mathematics
Shahabad Markanda, 136135, India

E-mail: tarun1_kansal@yahoo.co.in

Received:

Received: 16 June 2022; revised: 16 July 2022; accepted: 28 July 2022; published online: 27 August 2022

DOI:   10.12921/cmst.2022.0000016

Abstract:

The aim of the paper is to establish the basic governing equations for anisotropic thermoelastic medium with double porosity and microtemperatures and to construct the fundamental solution of a system of equations in cases of steady, pseudo-, quasi-static oscillations and equilibrium.

Key words:

double porosity, steady oscillations, thermoelasticity

References:

[1] R.A. Grot, Thermodynamics of a continuum with microstructure, Int. J. Engg. Sci. 7, 801–814 (1969).

[2] D. Iesan, R. Quintanilla, On a theory of thermoelasticity with microtemperatures, J. Ther. Stress. 23, 199–215 (2000).

[3] D. Iesan, On a theory of micromorphic elastic solids with microtemperatures, J. Ther. Stress. 24, 737–752 (2001).

[4] D. Iesan, Thermoelasticity of bodies  with  microstructure and microtemperatures, Int. J. Solids Struct. 44, 8648–8662 (2007).

[5] R.K. Wilson, E.C. Aifantis, On the theory of consolidation with double porosity-I, Int. J. Engg. Sci. 20, 1009–1035 (1982).

[6] D. Iesan, R. Quintanilla, On a theory of thermoelastic materials with a double porosity structure, J. Ther. Stress. 37, 1017–1036 (2014).

[7] T. Kansal, Generalized theory of thermoelastic diffusion with double porosity, Arch. Mech. 70, 241–268 (2018).

[8] T. Kansal, Fundamental solution of the system of equations of pseudo oscillations in the theory of thermoelastic diffusion materials with double porosity, MMMS 15, 317–336 (2019).

[9] T. Kansal, The theory of generalized micropolar thermoelastic diffusion with double porosity, Theo. and Appl. Mech. 49, 85–109 (2022).

[10] M. Svanadze, Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures, J. Ther. Stress. 27, 151–170 (2004).

[11] M. Svanadze, Fundamental solution in the theory of micromorphic elastic solids with microtemperatures, J. Ther. Stress. 27, 345–366 (2004).

[12] M. Svanadze, Fundamental solution in the theory of consolidation with double porosity, J. Mech. Beh. Mat. 16, 123–130 (2005).

[13] M. Svanadze, S.D. Cicco, Fundamental solutions in the full coupled linear theory of elasticity for solid with double porosity, Arch. Mech. 65, 367–390 (2013).

[14] M. Svanadze, Fundamental Solution in the linear theory of consolidation for elastic solids with double porosity, J. Math. Sci. 195, 258–268 (2013).

[15] E. Scarpetta, M. Svanadze, V. Zampoli, Fundamental solutions in the theory of thermoelasticity for solids with double porosity, J. Ther. Stress. 37, 727–748 (2014).

[16] T. Kansal, Fundamental solutions in the theory of micromorphic thermoelastic diffusion materials with microtemperatures and microconcentrations, CMST 28, 11–25 (2022).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST