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Abstract: The aim of the paper is to establish the basic governing equations for anisotropic thermoelastic medium with
double porosity and microtemperatures and to construct the fundamental solution of a system of equations in cases of

steady, pseudo-, quasi-static oscillations and equilibrium.
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1. Introduction

Grot [1] extended the theory of thermodynamics of elas-
tic bodies with microstructure with the assumption that
the microelements have different temperatures. He modi-
fied Clausius-Duhem inequality to include microtempera-
tures and added first-order moment of energy equations to
the basic balance laws for determining the microtempera-
tures of a continuum. Iesan and Quintanilla [2] constructed
a linear theory for elastic materials with inner structure
whose particles, in addition to the classical displacement
and temperature fields, possess microtemperatures. They
proved an existence theorem for initial boundary value prob-
lems via the semigroup theory and established the contin-
uous dependence of solutions of the initial data and body
loads. Iesan [3] established the field equations of a theory of
microstretch thermoelastic bodies with microtemperatures.
He proved a uniqueness theorem in the dynamic theory of
anisotropic materials. Iesan [4] derived a linear theory of
microstretch elastic solids with microtemperatures in which
a microelement of a continuum is equipped with the mechan-
ical degrees of freedom for rigid rotations and microdilata-
tion in addition to the classical translation degrees of free-
dom. He also established a uniqueness result in the dynami-
cal theory of anisotropic bodies.

The double porosity model represents a double porous
structure: one with macro porosity which is connected to
pores and the other with micro porosity which is connected
to fissures. Wilson and Aifantis [5] developed the theory for
deformable materials with double porosity. Iesan and Quin-
tanilla [6] derived a non-linear theory of thermoelastic solids
with double porous structure. They also linearized the above
theory and formulated the basic initial-boundary-value prob-
lems. Kansal [7-9] developed linear generalized theories of
thermoelastic diffusion and micropolar thermoelastic diffu-
sion with double porosity and constructed fundamental so-
lutions of a system of equations in case of steady oscilla-
tions. Svandaze and his co-workers [10-15] have also con-
structed fundamental solutions in the theory of thermoelas-
ticity with double porosity as well as microtemperatures. Re-
cently Kansal [16] has developed fundamental solutions of
a system of equations of isotropic micromorphic thermoe-
lastic diffusion materials with microtemperatures and micro-
concentrations in case of steady oscillations in terms of ele-
mentary functions.

In Sec. II, the constitutive relations, field equations for
anisotropic thermoelastic bodies with double porosity and
microtemperatures are derived. The system of linearlized
equations of steady, peudo-, quasi-static oscillations and
equilibrium in the theory of thermoelastic solids with dou-
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ble porosity and microtemperatures are presented in Sec. III.
In Sec. IV and V, in terms of elementary functions, the fun-
damental solutions of basic governing equations in cases of
steady, peudo-, quasi-static oscillations and equilibrium are
constructed. Finally, some basic properties of fundamental
matrix in case of steady oscillations are discussed in Sec. VI.

I1. Basic Equations

Following [2, 6, 7], the balance of linear momentum, the
balance of energy and the balance of the first moment of en-
ergy are given by

Qi + &+ pg = pkiiy, 4

Xi,i + ¢+ pl = phairs. (5)

Here U is the internal energy per unit mass, p is the density,
¢; is the heat flux vector, ();; is the first heat flux moment
tensor, (); is the micro heat flux average vector, u; are the
components of the displacement vector u, F; are the com-
ponents of the external forces per unit mass, ¢; is the first
moment of energy vector, o;;(= 0;;) are the components
of stress tensor, e;;(= €j;) = 3(u;; + uj;) are compo-
nents of strain tensor, 1 and v, are the volume fraction fields
corresponding to pores and fissures, respectively, k1 and ko

are coefficients of equilibrated inertia, g and [ are, respec-

ojig + pE = piii, ) tively, extrinsic equilibrated body forces per unit mass asso-
= . 0. . . . ) ciated to macro pores and fissures, {2;, x; are, respectively,
pU = 0ji€ji + i1 + Xil2i — Gii — &1 — G2, (2) the components of equilibrated stress vectors corresponding
to vy, vo.
=—Qjij — ¢+ Qi, (€)) The local form of the principle of entropy can be ex-
pressed in the form of an inequality called Clausius-Duhem
where £ and ( satisfy the relations inequality
Qi Qiji Qij Qij
S ———Tz =T, — —=T,T; T;; > 0, 6
p+T T2’+T TQ,J"’TJ,— (6)
where S is entropy per unit mass, 7 is absolute temperature, 7; is the microtemperature vector.
In view of Egs. (3) and (6), the balance of energy (2) reduces to
pITS — U — Tigi] + 0ijéj + Qi + Xava, — &1 — (o — T R inj T,T; + Qi;Tyi — (¢ — Qi)Ti = 0. (7)
If we introduce Helmholtz free energy function I" as
I'=U+Te —TS, ®)
then relation (7) becomes
—P[F + 78 — Tz&] + o5 + Qs + Xiva,; — {01 — (o — %Tz — %j T:T; 4+ QT — (¢ — Qi)T; > 0. (9)

The function I' can be expressed in terms of independent variables e;;, v1, V1,4, V2, V2,4, T, T ;, T; and T; ;. Therefore, we

have
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The inequality should be confirmed for all rates é;;, 71, 1 4, V2, V2 i, T, T i E and T” Hence the coefficients of above
variables must vanish, that is

or or or or
Oij = P%’ Q; = P@v Xi = pavz,f §= _paTl )
C=—ppy S=—Sh. = or, (1n
687{,‘1' = a(;l;j =0, (12)
—6iTi — Qi TiTy + TQi Ty — T(q: — Qi)Ti = 0. (13)
Let us introduce the notations
p=v1— (11)o, YV=v2— (1), 0=T—Tp, (14)

where Ty is the reference temperature of the body chosen such that |Ti0| < 1, (11)o and (v2)o are the volume fraction fields
in reference configuration.

In the linear theory of materials possessing a centre of symmetry, we can take I" in the form

. ab?
20T = Cijpneijepn + d*¢% + f1* — Ty +Gij 00,5 + fig¥a; — siTiTi+

15
+2pijeij¢ + 2vij€it — 2ai5€:50 + 250 5 — rigd Ty — digp T+ (13)
+20199 — 27190 — 27210.
From Eq. (11), it follows that
Tij = Cijpn€pn + Dij P + Vij¥ — a0,
Vi = qijdj + aijbj —riTy,
Xi = Qij¢ g+ fij 5 — dig Ty
§ = —pijeij —d" ¢ — a1y +mb,
¢ = —vijeij — a1 — fip + 720,
ab
pS = aijeij + o+ 1Y + 7,
0
pei = =8 Ty — 1y 5 — dijj . (16)
The linear expressions for ¢;, Q; and Q;; are
g = —[kijb ; + ri; Tj],
Qi = (Kij — kij)0,; + (—rij + Lij) T}
Qij = mijpnTn,p . (]7)

The linearized form of Eq. (6) is

pToS = —qi;i - (18)
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In view of Egs. (16) and (17), Egs. (1), (3)—-(5) and (18) become
Cijpn€pn,j T Pig®.j +Vij¥.5 — aijb ; + pFi = pi; ,
—pijei; + Qijb,ij — A" b + it — anh + 70 — 1Ty + pg = pkad,
—Yijeij + Qijb,ij — a1 + fiji; — fU + 720 — dij Ty + pl = pkath,
Tolaijéij + 710 + 2] + ab = kij0 i + wi; Ty,
MjipnTopg — 53515 = 1ij 05 — digthj = Kij0 5 + LijT; .
In the case of an isotropic and homogeneous material, the constitutive equations become
0ij = Nepplij + 2pe;; — B00;; + p1gdi; + patdiy
Qi =t1¢; +1mvY,; — 1oLy, Xi =110, +t2v; — r3l;

6 = —P1€pp — d*Qb - 0417[) + 7107 C = —P2€pp — arp — f¢ + 7207

ab
pS = Bepp + 7110 + 120 + T pei = =Ly —rad; — 3,
¢ = —[k0; + k1 T3], Qi = (k3 —k)0;+ (=K1 +r2)Ti,

Qij = KaTyp pbij + k5T j + ke,

where
Cijpn = A0ij0pn + UOipljn + 0indjp, @iy = iz, pij = p1dij, Yij = P20ij ,
Gij = t10ij, iy = 11045, Tij = 12055, fij = t20i5, dij = r3dij, sij = adyj,
Mijpn = Ii45ij5pn + K@(Sip(sj'n + 555in5jp7 kij = kéij, Rij = mdij, Lij = /4/251']'7 Kz‘j = ;‘4235,']‘ .
Here A, i, 8, p1,p2,t1,t2,71,72, 73, d*, 01,71, Y2, f,,a,k, K1, .. ., kg are material constants.

19)

(20)

Therefore, from Eq. (19) we obtain the basic governing equations for homogeneous isotropic thermoelastic material with

double porosity and microtemperatures in the absence of body and equilibrated body forces as

uAu+ (A + p) grad divu + py grad ¢ + ps grad ¢ — S grad 6 = pi,
—prdiva+ (1A —d*)p+ (1A —aq)p + 110 — rodivw = pk:lé,
—po divu+ (1A —a1)p + (t2A — [l + 420 — rzdivw = pkg&,

To[Bdiv i+ 71¢ + 729 + ab = kAG + k1 divw,

k6 AW 4 (k4 + k5) grad divw — aw — g grad ¢ — 75 gradep = kg grad 6 4 ko w,

where w = (T, T», T3) is the microrotation vector and A is the Laplacian operator.

2y
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III. Steady Oscillations

Let x = (x1,22,3) be the point of the Euclidean three-dimensional space E3, x| = (22 + 22 + 22)2, Dy =
= (a%, 3%, 3%3). Let us assume the displacement vector, volume fraction fields, temperature change and microtemper-

ature vector functions as:
[u(x,t),¢(x, t),z/)(x,t),e(x,t),w(x,t)} = Re [(u*,(b*,w*,e*,w*)e_“"t , (22)

where w is oscillation frequency.

Therefore, from the system of Eq. (21) we obtain the system of linearlized equations of steady oscillations in the theory
of thermoelastic solids with double porosity and microtemperatures as

[uA + (A + p) grad div + pwﬂ u + p; grad ¢ + pp grad ¢ — Bgrad = 0,

—prdivu + {tlA —d"+ pklwﬂ o+ (A — o) + 710 —rodivw =0,

—podivu+ (1A —ay)o + [tgA —f+ pkgoJQ]w + v20 — rzdivw = 0,
wTy[Bdivu+ v+ y20] + [kA + wad + k1 divw =0,

wlry grad ¢ + r3 grad ¢] — k3 grad 6 + |:KJ6A + (kg + £5) grad div — ko + wa|w=0. (23)

If we replace w by —¢7, where 7 is a complex number and Re(7) > 0 in the system of Eq. (23), then the system of equations
of pseudo-oscillations may be obtained as:

{,uA + (A4 p) grad div — pTQ] u + py grad ¢ + ps grady — Bgrad 6 = 0,
—prdivu + {tlA —d" - pk1T2:| O+ (rMA —a))p+v60 —rodivw =0,
—podivu+ (1A —ay)d+ |:t2A —f- pk272:| Y+ 20 —rgdivw = 0,
TTolBdivu+ 716 + 720] + [kA + Talf + K divw = 0,
T[rs grad ¢ + r3 grad ¢)] — k3 grad 0 + {Kng + (kg + k5) grad div — kg + 7a|w = 0. (24)
On taking p = 0 i.e. quasi-static case, we obtain the system of equations of quasi-static oscillations as:

uA + (A + p) grad div] u + py grad ¢ + ps grad ) — Bgradf = 0,
—prdivua+ (1A = d*)p + (MA —aq)y + 710 — radivw = 0,
—padivu+ (1A —a1)d+ (t2A — flip + 420 —rgdivw =0,

wTy[Bdivu+ v+ y20] + [kA + wa)d + k1 divw =0,

wwlry grad ¢ + r3 grad ¢] — kg grad 0 + |kgA + (kg + k5) grad div — Ky + wa|w =0. (25)
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If we put w = 0 in the Eq. (23), the system of equations of the equilibrium theory of thermoelasticity with double porosity
and microtemperatures as:

uA + (A + p) grad div|u + p; grad ¢ + pe grad ¢ — Bgrad 6 = 0,
—prdivu+ (1A = d*)p + (1A —a)y + 710 — radivw = 0,
—padivu+ (A — ag)p + (t2A — f)p + 720 — rydivw = 0,

kAO + k1 divw =0,

—kggrad 0 + |:I£6A + (k4 + k5) grad div — /42} w=0. (26)

We introduce the second order matrix differential operators with constant coefficients

@ (Dy) = (Fg(;'l) (Dx)> ,
9x9

where
FD(Dy) = [0 + gl + (), ED (D) = —FY (D) = p1 -
rq Pq 8.13p8$q p D 833p’
5 P )
E3 (Dy) = —F) (Dy) = pa—, Fi(Dx) = —f7—, Fi)(Dx) = hA —d* + phyw?,
axp 8xp
0
FAE;)(DX) = Fs(i)(Dx) =7A— o, le(é)(Dx) =71 F4(;1q)+6(Dx) = —7‘28?,
q
0

Fi(Dy) = taA — f + phow?, Fig) (Dx) = 72, st;lf,-,)JrG(Dx) = T35

q

0
ng;)(Dx) = WﬂTOﬁv Fﬁ(i)(Dx) = wTo, Fé;)(Dx) = w210,
q
0
Fi§ (Dx) = kA + wa, Fy.) ¢(Dx) = Fig Fi (D) =0,
q
1 0 1 1o} 1 0
F1§+)6;4(DX) = Lw?aT:p’ F;Jr)ﬁﬁ(Dx) = Lwrga—xp, FI§+)6;6(DX) = —K3 9z,

> )

1
F;+)6;q+6(Dx) = (KA — Ko + wa)dpg + (ka4 + H5)m, Fyiv6

(DX> =0, p,q= 1,2,3.

Here i = 1,2, 3,4 corresponds to static, pseudo-, quasi-static oscillations and the equilibrium theory of thermoelasticity
with double porosity and microtemperatures, respectively. The matrices F(¥)(Dy), i = 2,3, 4 can be obtained from matrix
F(1)(D,) by taking w = —¢7, p = 0 and w = 0, respectively and

F(D,) = (thmx))gxg,

where

Fs5(Dy) = t2A, Fg(Dy) = kA,
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2 ~
_Y E.
0z,0z,’ Ga+6(

pg=1,2,3; i=4,...,9; j=4,5; n=6,7,8,9.

Fpi6.9+6(Dx) = (KA — kg + 1wa)dpg + (K4 + Ks) D,) = F,166(Dyx) = 0,
The system of Eqgs. (23)—(26) can be represented as
FO(D,)U(x) =0, i =1,2,3,4,

where U = (u, ¢, 1,6, w) is a nine-component vector function on E3. The matrix F(Dx) is called the principal part of
operator F() (D).

Definition 1. The operator F()(Dy), i = 1,2,3,4 is said to be elliptic if |F(v)] # 0, where v = (vy,vs,v3). Since
[F(v)| = u? okr2rr|v|'8 ;N = X\ + 2u,0 = tits — 12, k7 = Ky + K5 + K, therefore operator F(¥) (D) is an elliptic
differential operator iff

prokrgry # 0. (27)
Definition 2. The fundamental solutions of the system of Egs. (23)—(26) (fundamental matrices of operators F®) are the

matrices G (x) = (Gﬁ(x)) satisfying conditions
9Ix9

FO(Dyx)GY(x) = 6(x)I(x), i = 1,2,3,4, (28)

where §(x) is the Dirac delta, I = (J45)9x9 is the unit matrix and x € E3.

IV. Construction of G(x) in Terms of Elementary Functions
Let us consider the system of non-homogeneous equations
(A + (X 4 p) grad div 4 pw?]u — py grad ¢ — py grad ¢ + wBTy grad § = H,
prdivu+ (1A +d1)o + (1MA — o)y + wnTob + wre divw = L,
podivua+ (MA — a1)d + (t2A + do) v + wwyTpb + wwrs divw = M,
—Bdivu+ 716+ ¥ + (kA 4+ wa)d — k3 divw = Z,

—rograd ¢ — r3grad ) + k1 grad 0 + [k A + (k4 + k5) grad div + kg]w = X (29)
where d; = —d* + pklwz, do=—f+ pk2w2, kg = —ko + twa and H, X are three-component vector functions on E3;
L, M and Z are scalar functions on E3.

The system of Eq. (29) may also be written in the form
FOT (DU ) = Q). (30)

where F()" is the transpose of matrix F(Y) | Q = (H, L, M, Z,X) and x € E?.
Applying operator div to the Egs. (29); and (29)5, we obtain

[S\A + pw?]divu — p1Ad — pa Ay + wBTH A = divH, (31)

—1roA¢ — r3AY + k1 AO + [H7A + Kzs}diVW = divX. (32)
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The Egs. (29)2—(29)4, (31) and (32) may be expressed in the form
NW(A)s =Q,

where S = (divu, ¢,v¢,0,divw), Q = (wy,...,ws) = (divH, L, M, Z,divX) and

NO@) = (N@) -

A + puw? —pA —p2 A twfBTHA 0
P1 tlA + dl TlA — Q1 LW"}/lTO LWTre
= D2 rA — oy oA+ do w2 Ty wrs
—B T V2 kA +wa —K3
0 —ryA —r3A K1 A K7 A + kg

5x5
The Egs. (29)2-(29)4, (31) and (32) may also be written as
ra)s =w,

where

5
1 *
\I’:(\Ill’,,,,\ll5)7 \I/ZD: M+ 2 :Nz(pl) Wy,
=1

1

F(l)(A) =5

IND(A)], M* = Xkekzo p=1,...,5,

and Ni(pl)* is the cofactor of the element Ni(pl) of the matrix N(1).
From Egs. (34) and (36), we see that

5
@) =JJ@a+x),

i=1

where A\?, i = 1,...,5 are the roots of the equation T'(*) (—v) = 0 (with respect to v).
Applying operator ') (A) to the Egs. (29); and (29)s, respectively, we obtain

TO(A)(A+ N)u =¥,
TO(A)(A + A)w = B,

2
where \2 = £~ \Z = %2 and
I K6

1
v = #{F(l)(A)H — grad [()\ + )W —p1 Vo — po W3 + wfTy ‘1’4] }7

1
‘I’” = {F(l) (A)X — grad |:(H4 + H5)\I/5 — T2 \IJQ — T3 \113 + K1 \114:| }

Ke
From Eqgs. (36) and (38), we obtain

0 (A)U(x) = ¥(x),

where O = (W', Wy, U3, Uy, ¥") and

o= (o) .

(33)

(34)

(35)

(36)

(37

(3%)

(39)
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6
05 (A) =T (A) (A +23) = [T(a + D),
i=1
5
oW

@:(01426;}7+6(A) =TM(A)(A+)}) = H (A+ A7),

O5(A)=0; p=1,

2,3; g,h=1,..
The Egs. (36) and (38) can be rewritten in the form

9 gF# h.

5
o = [—TOA)T +wP (A raddiv}HJr w®
[M () (A)e 3

i1 (A) grad w;,
4
1
=Y wi(a)
=1

i=2
1
grad w; + [F(l)(A)J + w( )(A) grad div} X,
Kg
4
U = wl) (A)divH+ Y wl) (A)w; +wl) (A)divX; 1=2,3,4
=2

(40)
where, we have used the following notations

7 | D) = P 8) ~ pa W) + BT ()]
1 - - - -
w(A) = — e {(54 + n5)N1§;)(A) - TQN;Q(A) - rgN;?(A) + K N(1>(A)],
(1)
w(l)(A) — M.

=1,...,9; =2,3,4.
M* P ’ y9y 4 [g]
From EqS (40), we have

where

(41)

6I¢8Ij
(1) 1) Ay 9 (1) 1), Ay O
Ri+6;p+2(DX) = Wsy, (A)aj’ Rp+2;i+6(Dx) p5 (A) or:
1 1 1 82
R§+)6;j+6(Dx) = %F(l)(A)% + wés)(A) 92,07,
RO

p+2n+2(D )_wé}n)(A)a Zv.] =1,2,3; pan—Q 3,4

(42)
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From Egs. (30), (39) and (41), we obtain

ey = RO'FO"y.
The above relation implies
ROTFOLT _ )
Therefore, we obtain
F (D, )RM (Dy) = @ (A).
We assume that

2 2 . _ .
A FAF05 pog=1,....7 p#q.

Let
Y06 = (100) v Zr?g%g
9><9
(1) : ) ) ’ (1)
1 1 1 1
Yp+3;p+3(x) ngg Sg(x), Yp(+6p+6( )= Z T'3g Sg(x),
g=1 g=1,9#6
Y\Wx) =0, p=1,2,3 i,j=1,....9 i#j,
where
( ) L/\ |x| [§] ) f[ (/\2 )\2)
n\X) = ——F— = Top =
471'|X| = 1,z;£g i=1,i#h

r)= I G- n=1,....7 g=1,....6; h=1,....5; I =1,....5T.

Lemma 1. The matrix Y () defined above is the fundamental matrix of operator @ (1) (A), i.e.
O (A)YYW (x) = §(x) I(x).

Proof: To prove the lemma, it is sufficient to prove that

rOA)A + )Y (x) = 6(x), TV(A)YY (x) = 8(x), TO(A)(A +A2)Y5H (x) = 6(x).

Consider

b

6 )
0 (1) Zj:1(_1)JZj
g ry,, = ——m——

i=1

27
where

6 6

6

2= [1O5 =) T3 =2 T3 =28 = 29,
=3 j=4 =5
6 6 6

22 = [T = D JTOG = XD TTOG = A5 = 2D,

=3

<.
=
Il
Tt

(43)

(44)

(45)

(46)
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6 6 6
m= [ OF= )L -2 ][ —\2),
i=2,i#3 j=4 =5
6 6 6
a= [T G3-20 IT -2 ]I03 =9,
i=2,i74 j=3,j7#4 1=5
6 6 6
= [T (-2 ) JT 3-8 =29,
i=2,i#5 j:3,j¢5 l:4,l;é5
7 5 5
SR | CYEP T | [CEEPH] | [EFEPHICYEPY)
1=2,i7#6 7j=3 =4
6 6 6 6
ar=[TOF =) [T = AD T3 = A TTOF = 208 = 29).
i=2 j=3 1=4 p=5
On simplifying the right hand side of the above relation, we obtain
Z r =o. (47)
Similarly, we find that
6 2
Z (A3 -2 =0, Zr1 [H(A?-Af)]:
=2 = =
3 4
1 1
ZT;Q[H( v}_o ZTU{H(A;_W]:
= j=1 =5 j=1
H rig (02— 22) = 1. (48)
j=1
Also,
(A+2A2)5e(x) = 6(x) + (A = A))sy(x); pg=1,...,7. (49)

Now consider

rOA) A + 227 (x) = H (A+22) ng G(x

6 6
=H<A+A$>Zr$[é<> (2 = X) >]=
6 l - 6 6
TI(a+2) [6<x> S Sz - A_f,)gg(x)]

Using Eqgs. (47)—(49) in the above relation, we obtain

6 6
PO@A) A + )Y () = [ +2) [Z KDz - A§><g<x>} -

6

ﬁA+>\2 [Z M0 AQ){é(x;+(A§_A§)gg(X)}} _

g=2
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i=3 9=3 j=1
_ f[fA ) [;:rg? | Jf[l@? )] 360+ 03 - )] | =
_ ﬁ(A FA2) Xﬁjrﬂf {H(A? - A-‘%)] gg(x)] B
11 Rl
[T ) [ gr;? | jf[l(g )] 560+ 02 - 30| -
_ ﬁ)(A ) LZZTS’) {H(Af - Af])]cg(X)] -
) ’
_ (AHg)[ng?[H(Ai /\3)} {Mx) + (A2 A?,)gg(x)H -

The Egs. (46)5 and (46)3 can be proved in the similar way.
We introduce the matrix

GV (x) = RM(D,) YV (x). (50)
From Egs. (43), (45) and (50), we obtain
FO(D,)GW(x) = FV(DORY (D) YD (x) = ©0(A) YD (x) = 3(x) I(x).

Hence, G(M(x) is a solution to Eq. (28);.

Theorem 1. If the condition (27) is satisfied, then the matrix Go (x) defined by the Eq. (50) is the fundamental solution of
the system of Eq. (23) and the matrix G (1) (x) is represented in the following form:

GO (x) = (G&)@)) 7
9x%x9
G (x) = R} (DY (x), G, (x) =R (DY (%),

1 1 1
GU) 5x) =R (DY (x); g=1,...,9; h=1,2,3.

V. Construction of Matrices G (x) fori = 2,3,4

V. 1. Pseudo-Oscillations
‘We introduce the matrix

G (x) = RP(D,)Y?(x), (51)

where the matrices R(?) (D,.) and Y(?)(x) can be obtained from matrices R(")(D,) and Y (V) (x), respectively, by taking
w = —7 and repeating the above procedure after Eq. (28).

Theorem 2. If the condition (27) is satisfied, then the matrix G(2) (x) defined by the Eq. (51) is the fundamental solution of
the system of Eq. (24).
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V. 2. Quasi-Static Oscillations
In this case the matrix N3)(A), operator I'® (A) and matrix operators @) (A), R() (D), Y®)(x) and G®) (x) are

obtained as:

NO@) = (NP@)

5x5 5x5

i) 8O@) = (N)
NP(A) = LN (A) = —p1, NE(A) = —p2, NP(A) = wpTo, NF(A)=
N(A) = AND (D), NP (A) =8P (a) = NP (),
NB(A) = N (A) =tsA —d*, N(A) = N (A) = NY(A) = NG (A) =i A — ay,
N (A) = NP(A) = oA — £, ND(A) = NP (A) = N (A),

3 _ n(@3 _ 1 .o R . _ . _
NE(A) =N (A) = NP(A); i=1,2,3; 1=2,3; p=4,5; ¢=1,...,5.

4

(i) I@A)=AT]@A+u),
i=1
where p2, i =1,. .., 4 are the roots of the equation |N3) (—v)| = 0 (with respect to v).

i) 0(8) = ()

9x9

4
0X(A) =T (A)A = A2 T[(A + 1),
i=1
4 5
6
(A) =T (@A) = AT[(A+ 1), OFpi6(d) =T@A)A+p2) = AT](A+4),
3 =1

e'Y(a) =o, u§=%; p=1,23; gh=1,...,9; g#h.
6

[(A L) RO (A) - VD (A) - ppND(A) + LwﬂToN,E?(A)] ,

pl - M*M
3 1 < (3 < (3 < (3 < (3
W (8) = = g (e + R VD) — WD) - S () 4 S ).
N(B)(A)
3 _ 4Vpg o — .o
wI(Jq)(A)_Tv p_la"'757 q_2a3747
where N i,7 = 1,...,5 is the cofactor of the element Ni(;’) of the matrix N®).

Zj’

(v) RO(Dy) = (Ré?(Dx>)9 .

82
8a:i8xj ’

1
R (Dy) = ~T®(A)d;; + wi? (A)
)

0 0
Ry ea (D) = wii) (A) 5 Ry (D) = i (A) -,
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(3) NG VNN 3) —® 9
Ri+6;p+2(DX) = Wsy, (A)(‘)Tvi’ Rp+2;’i+6(Dx) =w, (A)axl
R;EEQQ;quZ(D ) - w}()?(;)(A)’ Za] = 132 3 p,q = 2 3 4.

(vi) YO (x) = (ng?’) <x>) L Y (x) = riYe (%) + iy e (%) + Zn 2% (%),

9x9

3 3) -
Yp(+)3 p+3( x) = Té1)§1 )+ Z T g+1§g

3
Yp(+)6 pi6(X) = 7'31 Sy (x) + er g+15 (X

VO =0 p=1,2,8 6] =19 i £
where
1 x| ettglx
* = — * = —— C = 1 . 5
o1 4r|x|’ ©2 87’ %9(x) 47T\x|’ 9= T
(3) _ N1N2N3+N1N2N4+N1N3M4+N2M3/~L4
T = 2.2 2 2
My Ha sy
4
7“12 —7‘21 HM 7“11+2 pt H (i —pi)
i=1,i£l
4 5
3 — - 3 _
Tél)+1 —Hy 2 H (N?_HZQ) Y 7’:(1,1) —H,Ui %,
i=1,il i=1
5
3 - _
i = [ G2 —ud) ™ =14 =15
i=1,i#n
On introducing the matrix
G (x) = RO(Dx) Y (x), (52)

we obtain
F(Dy)G® (x) = F® (D, R (Dx) Y (x) = @F(A)Y®) (x) = 6(x) I(x).

Hence, G(®)(x) is a fundamental solution to Eq. (28)s.

Theorem 3. If the condition (27) is satisfied, then the matrix G®) (x) defined by the Eq. (52) is the fundamental solution of
the system of Eq. (25).

V. 3. Equilibrium Theory
In this case, the matrix N(*) (A), operator I'® (A) and matrix operators @ (A), R (D), Y® (x) and G® (x) are
obtained as:

NO@) = (M)

6Xx6

() NO(Q) = (N;i’w)
6X6
NP(a) = NP A), NP (a)=ND (), NPy =N @) =o,

NP (A) =k, NZ(A) = NG (A) = ks,

N(A) = k1, N(A) = N(A) = veA = ko, NP(A) = AN (D),

p=1,...,5 i=1,2,3; | =4,5.
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3
(i) TW(A) =A2(A+w)),

i=1

where w?, i = 1,2, 3 are the roots of the equation [N(*)(—x)| = 0 (with respect to k).

(i) ©@W(A) = (@é‘iﬁ(A))g X
3

Ol (A) =T (a)a = A*T[(A +w?),

i=1

3
Géﬁs;pw(A) =T0(a) = A2 1_[(A ),

=1
4
(A) =TD(A)A +wd) = A2 [(A +w?), ©5(A) =0,
=1

wiz—%z; p=1,23 gh=1,...,9 g+#h.

(4)
®p+6;p+6

. 1 ~ - -
() w(8) =~ [(A + N (8) - pN (A) — pzN,S?(A)} :

1 - - - -
wid () = — 57 {(54 +h5) NS5 (A) — 12N (A) — rs NS (A) + mNﬁ)(A)} :
ey

w(4)<A) = M&i(ﬁ”? p=1,...,5 q=2,3,4,

where Z\?i(f); i,7 = 1,...,5 is the cofactor of the element Ni(;»l) of the matrix N(¥).

) RO = (R)D0)

9%x9
82
9
8xi8x]—

1
RY(Dy) = ;F(4)(A)5u +upy(8)

(4) _ 1 (4)
Ri+6;j+6(DX) = %F( )(A)5ij + Wy (A)axiaxj’

0
4 4 4 4
Rz(’+)6;P+2(DX) = w( )(A)aT:i’ Rz()+)2;i+6(Dx) = wés)(A)%,

R, o) = wl(A); i, =1,2,3; p,q=2,3,4
3
. 4 4) « 4) « 4 ~
(vi) YO (x) = (Yﬁ ><x>) YO0 = P60 +rB 0 + 3 10,06, (),
9x9 g=1

3
4 4) 4) % 4 N
Y () = 5 () + 5 s () + D) 06 (x),
g=1

4 4) « 4) &« 4 N
Y pie(x) = il st () + iy () + Sl ¢ (x),

¥
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where
R ( ) e“"’g‘xl 1 4
(xX)=———7—5 9g=1,...
g 47T|X|’ bl P
4,20 2 2 4,,2(, .2 2 4,2/ 2 2
o  wiwy (w3 +w3) + wyws(wi + wi) + wiwi (Wi +w3)
1 = 6, 6,0 )
WiWows
1 3
4) _ (4 _ 4  _ —6 2 2\ —1
T2 =722 = 5575, Ti42 = —W H (Wi —wp)™
wiwsws Nty
i=1,1#1
2 2 2 2 2 2 3
(4) _  Wjwi twiwztwiwi @) 4 (W2 — W)
Tor = I 44 » Tope =W wi —wy) o,
Wiwys e
i=1,i#l
2 2 2 2,2 2 2 2 2 2.2 2 4
(4) _  wiwjwi +wiwjw) + wiwsw]) + wiwiwy 4 9
T3y = — 3. 3 3 3 » Tzg = | Wi
WiwaW3ly i1

4
ré?T)LH:w:l H (W2 —w?)™ 1=1,2,3; n=1,...,4.
1i#

If we introduce the matrix
G (x) = RYD) YW (x). (53)
then we obtain
F®(Dy)GW (x) = FY (D )R (D) YW (x) = W (A) YD (x) = §(x) I(x).

Hence, G¥)(x) is a solution to Eq. (28)4.

Theorem 4. If the condition (27) is satisfied, then the matrix G® (x) defined by the Eq. (53) is the fundamental solution of
the system of Eq. (26).

VI. Basic Properties of G(1)(x)

Theorem 5. Each column of the matrix G(l)(x) is a solution of the system of Eq. (23) at every point x € E? except the
origin.

Theorem 6. If the condition (27) is satisfied, then the fundamental solution of the system F (D, )U(x) = 0 is the matrix

9x9
1 9? 1~ 7.,
Wi;(x) {)\amia% - NRU}% (x),
1 92 1 .
Wite,j+6(x) = [m 02,07, rg |2 (x),
0L

t t
Wia(x) = ;2 1 (x), Wis(x) = ;1 St (%),

Lo, S
Wis(x) = Waa(x) = *;1 s (x), Wee(x) ?1,
Wigra(x) = Wyya,j(x) = Wpn(x) = Wip(x) = Weir6(x) = Wiyee(x) =0,
~ 92
23 Ay i,j=1,2,3 g=1,...,6; p=6,7,89; n=4,5. (54)

* 89318903
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Lemma 2. If condition (27) is satisfied, then

1
Aw (”m) T A RDFDA) = T,
1
AwP(A) = (A + AN (A) = —TO(A)dy5; p=1,...,5. (55)
M* P Ke
Proof: Consider
1 (- -~ . .
wy(A) = —M*u{wﬁw ~ VR (A) = pa N (A) + BT, ”(A)}.
Now
T (A)S, = L et N (A)s,, = ! {()\A + p? )N (A)+
M+ M+
—pm ANG (A) = p,AND (A T,AN' (A
p1 12 (A) = p2 13 (A) + wpTy p4()'
Therefore,
1 (- - N N .
Aw)(A) = M*M{AANIEP(A) ~ pIAND (D) — ;AN (A) + ngTOANIEB(A)} =
1 £ (1) ey
=~ | M T @0 = (nA + PN (4| =
1 ~ 1
= W(A + AE)N;S})(A) - ;F(l)(A)épl .
Similarly, we can prove Eq. (55)s.
Theorem 7. If condition (27) is satisfied and x € E3 — {0}, then
Gﬁ) (x) = Dz, Z p115p(%) + Ry c611 56(%),
=1
0 < ' 0
1 1
Gé;l)+2(x) = 9z Zcpllgp(x)7 Gl(+)2;g(x) = Oz Zcplﬂp(X)
g p=1 9 p=1
M) ) ? 3
1 1
Gl+2 n+2( x) = Z CpinSp(X), Gg;h+6(x) = M Z Cp155p (%),
p=1 =1
9?2
1 1
G(nge;h(X) = m Z Cp515p(X), Gl(+)2 g+6 Z Cpissp(X
p=1
PR
1
G(-'26l+2 = 87 Z CpsiSp(X
9?2 7
1 .
G(g+6 h+6( ) azgaxh Z Cp55§p(X) + Rgh C755 §7(X); 9, h = 17 27 37 l7 n= 27 37 47
=1
where
él) (1) (1) N
Cpgh = _M*Z;\z gh (_)‘;2))7 Cpgl = W gl (= /\2)
P
1 1 1 1
o1 = Yl Crss = l{ﬁ)\gv g,p = 5y h=1,5; 1=2,3, (56)
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Proof: From Eq. (49),
Agi(x) = —Ng(x); j=1,...,7.

Thus, we have

1 0? -
_7? (aIgth a Rgh) gj(X) - 6gh gj(X)7 x # 0.

Consider

G (x) = R_@?(Dfof)(x) =

1 0?
= |=rM(A) W Wei(x) =
{MF (A)dgn + wqy ( )6xgaxh 2 7’1] (%) =

6
9? 1
=S [ 2 o] o T R f)

= : Oz 40y,

From Eq. (55)1, we have

Using Eq. (60) in Eq. (59), we get

6
:Z {[ M*/\z(—/\er/\%)Nl(i)(—)\f) axf;%Jr;\ZF(”( )\Q)Rgh}gj(x)
Now,
T =00 j=1,....5,
POl =1, =g,
and

(=AF + )\Z)TS) = r%); j=1,...,5,
(A2 422 =0; j=6.

By virtue of Eq. (62), Eq. (61) becomes

5
Wy 0 3 [ENCIR ) 1 _
Ggh (X) - 3x93$h = |: M*)\2 2] ( A ) ( ) + Rgh N}\% gﬁ(X) -

P i
= — 115 (x) + Ron ce11 S6(X).
axgaxh ; 511 ]( ) gh €611 6( )

The remaining formulae of the above theorem can be proved in the similar way.

(57)

(58)

(39)

(60)

(61)

(62)
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Lemma 3. If the condition (27) is satisfied, then
5 5 5
1) 1 1) 1)
>y = ngp A=dora =Y N =0, ng,, A =1,
p=1 p=1 p=1
(1) 5 * X
STt e = 63
p=1 "P i=1 pw? Ny (0) kg N5 (0)
and
5 5
Zcpll = —(p*)71, Zcpll)‘p = -\
p=1 p=1
5 5
Zcp55 = —rg Zcpss)\p = k7,
p=1 p=1
5 . 5 . 5
1 _
D e ==, ) cpss - > epa =k (64)
p=1 p=1 p=1
Proof: Consider
NP (=X2) = krgo XS + MG + M3 AL + My A2 + N{(0), (65)

where M, p = 1,2, 3 are coefficients, independent of A, and skipped due to lengthy calculations

It is easier to prove the relations (63) using Eq. (44). From Egs. (63) and (65), we get

Z rin) (ko AS + MIAL + MEA2 + M3 + NP (01 2] =
p=1

and
5
>R -2

[krro XS + MEAS + MyAL + M3 A2 + N (0)] = kero.

Therefore, from Eq. (56), we have

T ~
Zcpu Z 2N (-A2) = = (o),

Zcpll)\ _ Z 2p N(l ):_Imw: 51

Similarly, we can prove Egs. (64)2 and (64)3.

Theorem 8. The relations

Gz(,lq) (x) — Wpe(x) = constant + O(|x|); p,g=1,... (66)
hold in the neighbourhood of the origin.
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Proof: For p,q = 1, 2, 3, consider

GO (x) = Wy(x) = Y11(x) + Rpq Ya2(x), (67)

where

_e(x
Yii(x chug 2§\ ),

_ g* X
Yoo (x) = co11 $6(x) + 2/8 ) (68)
From Eq. (68), we have
Y, . Cj11 o l>‘§ -1 x|
”(X)_ZWZ TR
j=1 =0
= l)‘é -1 _ |X|
- 2203112 T x| -
j=1
L iic — x| Zc A3 + —LZC‘ A+ Ya3(x) (69)
- ] ‘X| : 711 711 )\ A £ J117j 33 .
Jj=1 Jj=1 Jj=1
Similarly,
— 1 2 1 L _
Yoo (x) = ~ % |:|X|0611 - |X|(0611)\§ - H)] - ECGII)\G + Yia(x), (70)
where
5 AN
% 1 CAj et
Y33(X)=—EZCJ‘HZT,| =
j=1 =3
_ 1 > AL _
Y44(X) = —60611;Tﬁ|x|l 1. (71)
Clearly
Fin(x) = O(x[2), -2~ (x) = O(Ix])
) 81'6 )
2 —
e nh(x) = constant + O(|x|); e,i=1,2,3; h =3,4. (72)
Consider
O (1)_ @ 0 (1) |37 1
Ay \ x| ) xPTaxF\ x| ) | [x[P|
Hence,



The Theory of Thermoelasticity with Double Porosity and Microtemperatures

107

Therefore,

82
<8xp8xq

Eq. (67) with the aid of Eqs. (64), (69)—(73) becomes

62

(1) _ -
qu (X) qu (X) axpaxq

Similarly other formulae of Eq. (66) can be proved.
Therefore, matrix W (x) is the singular part of the fundamental matrix G() (x) in the neighbourhood of the origin.

~ 1 1
- qu) m - 6ghAm =0.

(73)

Y33(x) 4 Rpq Yaa(x) = constant + O(|x]).

VII. Conclusions

The current paper gives the following outcomes:
1. Without utilizing Darcy’s law, the linear theory of

thermoelasticity with double porosity and microtem-
peratures is derived. This theory can be useful for
finding fundamental solutions, studying wave phe-
nomenon, etc.

After reducing the governing equations in isotropic
medium, the fundamental matrix of system of equa-
tions in cases of steady, pseudo-, quasi-static oscilla-
tions and equilibrium are obtained and properties of
fundamental matrix are discussed.

References

(1]
(2]
(3]
(4]

(3]

R.A. Grot, Thermodynamics of a continuum with microstruc-
ture, Int. J. Engg. Sci. 7, 801-814 (1969).

D. Iesan, R. Quintanilla, On a theory of thermoelasticity with
microtemperatures, J. Ther. Stress. 23, 199-215 (2000).

D. Iesan, On a theory of micromorphic elastic solids with mi-
crotemperatures, J. Ther. Stress. 24, 737-752 (2001).

D. lesan, Thermoelasticity of bodies with microstructure
and microtemperatures, Int. J. Solids Struct. 44, 8648—-8662
(2007).

R.K. Wilson, E.C. Aifantis, On the theory of consolidation
with double porosity-1, Int. J. Engg. Sci. 20, 1009-1035
(1982).

CMST 28(3) 87-107 (2022)

(6]

(7]
[8]

191

[10]

[11]

[12]

[13]

(14]

[15]

[16]

D. Iesan, R. Quintanilla, On a theory of thermoelastic ma-
terials with a double porosity structure, J. Ther. Stress. 37,
1017-1036 (2014).

T. Kansal, Generalized theory of thermoelastic diffusion with
double porosity, Arch. Mech. 70, 241-268 (2018).

T. Kansal, Fundamental solution of the system of equations
of pseudo oscillations in the theory of thermoelastic diffusion
materials with double porosity, MMMS 15, 317-336 (2019).
T. Kansal, The theory of generalized micropolar thermoelas-
tic diffusion with double porosity, Theo. and Appl. Mech. 49,
85-109 (2022).

M. Svanadze, Fundamental solutions of the equations of the
theory of thermoelasticity with microtemperatures, J. Ther.
Stress. 27, 151-170 (2004).

M. Svanadze, Fundamental solution in the theory of mi-
cromorphic elastic solids with microtemperatures, J. Ther.
Stress. 27, 345-366 (2004).

M. Svanadze, Fundamental solution in the theory of consoli-
dation with double porosity, J. Mech. Beh. Mat. 16, 123-130
(2005).

M. Svanadze, S.D. Cicco, Fundamental solutions in the full
coupled linear theory of elasticity for solid with double
porosity, Arch. Mech. 65, 367-390 (2013).

M. Svanadze, Fundamental Solution in the linear theory of
consolidation for elastic solids with double porosity, J. Math.
Sci. 195, 258-268 (2013).

E. Scarpetta, M. Svanadze, V. Zampoli, Fundamental solu-
tions in the theory of thermoelasticity for solids with double
porosity, J. Ther. Stress. 37, 727-748 (2014).

T. Kansal, Fundamental solutions in the theory of micro-
morphic thermoelastic diffusion materials with microtemper-
atures and microconcentrations, CMST 28, 11-25 (2022).

Tarun Kansal is an Assistant Professor of Mathematics at Markanda National College, Shahabad Markanda,
Kurukshetra, Haryana (India). His field of research is Solid Mechanics and thermoelasticity. He has published
31 papers in reputed international journals.

DOI:10.12921/cmst.2022.0000016



	Introduction
	Basic Equations
	Steady Oscillations
	Construction of G(x) in Terms of Elementary Functions
	Construction of Matrices G(i)(x) for i=2,3,4 
	Pseudo-Oscillations
	Quasi-Static Oscillations
	Equilibrium Theory

	Basic Properties of G(1)(x) 
	Conclusions

