• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 26 (1) 2020, 15–20

On the Singular Value Decomposition and Ranking Techniques

Zizler Peter 1, Thangarajah Pamini 2, Sobhanzadeh Mandana 3

Mount Royal University
4825 Mt Royal Gate SW
Calgary, AB T3E 6K6
1 E-mail: pzizler@mtroyal.ca
2 E-mail: pthangarajah@mtroyal.ca
3 E-mail: msobhanzadeh@mtroyal.ca

Received:

Received: 13 November 2019; revised: 18 March 2020; accepted: 18 March 2020; published online: 21 March 2020

DOI:   10.12921/cmst.2019.0000048

Abstract:

Let A be a positive non-singular n×n matrix. An approximation for a positive eigenvector for A*A corresponding to the dominant singular value of A was suggested as the normalized version of a weighted sum of the rows of A with weights being the euclidean norms of the rows of A. In our paper we give a justification for this approach via the iteration of the power method and we show numerically that choosing the l1 norm yields better results. Applications of our results are given to ranking techniques.

Key words:

positive matrices, ranking, singular value decomposition

References:

[1] G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application, Meccanica 15, 21–30 (1980).
[2] C. Hepler, P. Thangarajah, P. Zizler, Ranking in Professional Sports: An Application of Linear Algebra for Computer Science Students, 21st Western Canadian Conference on Computing Education, Kamloops, BC, Canada (2016).
[3] R.A. Hanneman, M. Riddle, Concepts and Measures for Basic Network Analysis, The Sage Handbook of Social Network Analysis, SAGE, 346–347 (2011).
[4] D. James, C. Botteron, Understanding Singular Vectors, The College Mathematics Journal 44(3), 220–226 (2013).
[5] P. Lancaster, M. Tismenetsky, The Theory of Matrices, Academic Press (1985).
[6] S. Montesinos, P. Zizler, V. Zizler, An Introduction to Modern Analysis, Springer (2015).
[7] I. Shimada, T. Nagashima, A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems, Progress of Theoretical Physics 61(6), 1605–1616 (1979).
[8] G. Strang, Linear Algebra and Its Applications, Cengage (previously Brooks/Cole), 4th edition (2006).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST