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Abstract: Let A be a positive non-singular n×n matrix. An approximation for a positive eigenvector for A∗A correspond-
ing to the dominant singular value of A was suggested as the normalized version of a weighted sum of the rows of A with
weights being the euclidean norms of the rows of A. In our paper we give a justification for this approach via the iteration
of the power method and we show numerically that choosing the l1 norm yields better results. Applications of our results
are given to ranking techniques.
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I. MAIN RESULTS

Singular value decomposition is a fundamental result
in matrix theory with vast applications across the sciences,
see [5]. In our paper we will consider applications to so-
cial networks as well as ranking algorithms of sport teams.
For matrices with positive entries the dominant singular vec-
tors have also positive entries and yield the desired appli-
cations. For example, in the context of sport team rankings,
one dominant singular vector captures the offensive prowess
of the teams where as the other one captures their defensive
ability. Ranking of sport teams requires knowledge of both
and therefore the singular value decomposition of a matrix
is of interest.

While common sense might dictate that an excellent of-
fense and excellent defense often go together, there are many
instances of teams in sports that are great in offense and yet
are weak on defense or conversely. This is most evident in
the NBA basketball or NHL hockey. That is why the singu-
lar value decomposition of a matrix is needed, yielding these
two dominant singular vectors.

As a result, fast approximation techniques for these vec-
tors are of great interest. We provide theoretical results

on these approximations and deliver numerical results as
well for random matrices that can be reproduced later on.
Our simulations are performed in MATLAB R© and are read-
ily reproducible in different computational environments.

A natural question arises as to why there is a need to ap-
proximate the dominant singular vector when fast singular
vector approximation algorithms are readily available, em-
bedded in the numerical singular value decomposition al-
gorithm. The answer can be two fold. The straightforward
approximation techniques given in our paper have low com-
plexity and therefore are readily to be implemented for larger
matrices. Second, and more importantly, the approximation
techniques presented in our paper are quite intuitive approx-
imations for the dominant singular vectors. Therefore, they
can be easily understood by an undergraduate student and
thus it is of interest to see how these perform numerically.

We will use three norms with integral values as expo-
nents, namely the l1, l2 and l∞ norms. These norms are
commonly used in applications and using non integral val-
ues for the norm exponents would yield unnecessary com-
putational complexity. In particular, the euclidean norm l2 is
defined for a vector x = (x1, x2, . . . , xn)

T ∈ Rn as ||x||22 =
= x21 + x22 + · · · + x2n. Similarly, the norm l1 is defined for
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a vector x ∈ Rn as ||x||1 = |x1|+|x2|+· · ·+|xn|. The norm
l∞ is defined for a vector x ∈ Rn as ||x||∞ = max{|xi|}.

Given any square matrix, a physical matrix from a given
specific application setting, it is easy to test numerically
whether the ranking due to the approximated dominant sin-
gular vectors, arising from any norm used, is the same as the
ranking due to the actual dominant singular vectors. More-
over, it is straightforward to measure the difference between
the approximated dominant singular vector and the actual
one, done any any norm of interest. To determine which
norm performs better overall many matrices have to be tested
as we do not provide closed form descriptions for which ma-
trices do better in which norm. To this end, we rely on Mat-
lab R© built in algorithms to generate matrices with random
entries in the relevant range. For each matrix thus generated
we compare which norm performs better.

As a result our main focus here is not a theoretical ap-
proach to provide results, rather it is based on numerical
simulation models that are easily attainable for undergrad-
uate students, where faculty and students can work together
and the results given can be readily understood. Having said
that, our paper does have some theoretical aspect, mainly the
power method.

We would like to make a connection of our results here
to the study of dynamical systems in analyzing Lyapunov
instability. We direct the reader to some references on this
topic [1] and [7].

We now present some needed nomenclature. A square
matrix A is said to be non-singular if there exists a square
matrix A−1 so that AA−1 = A−1A = I , where I denotes
the identity matrix, a matrix with ones on the diagonal and
zeros elsewhere. A square matrix A is said to be singular if
A fails to be non-singular.

Let A be a n × n non-singular positive matrix (all en-
tries are positive real numbers). Consider the singular value
decomposition of A (SVD)

A = UDV ∗.

The column vectors {ui}ni=1 of the matrix U (an or-
thonormal set of vectors) and the column vectors {vi}ni=1

of the matrix V (an orthonormal set of vectors) are referred
to as the singular vectors. In particular, we haveAvi = σiui,
where σi is the (i, i) entry in the diagonal matrix D, referred
to as the singular value of the matrix A. The first singular
vector v1 corresponds to the singular value σ1, the largest
singular value of A called the dominant singular value.
We refer to v1 as the dominant singular vector, the same
terminology is used for the corresponding u1. The Perron-
Frobenius Theorem ensures the existence of these with v1
being unique (unless two or more of the singular values tie
for dominance) and moreover, according to the Theorem, the
entries in v1 and u1 must be positive.

In [4] it was suggested that a good approximation v̂1 for
v1 is given by the normalized version of

v̂1 =
∑

wiai, (1)

where ai is the ith row of A and wi is its length. In the paper
the length was understood as the euclidean l2 norm and it
was asserted the approximation performed well numerically.
The following result gives a partial justification for this ap-
proximation.

Theorem 1. The sum

v̂1 =
∑

wiai,

where wi = ||ai||2 is the one step iteration of the power
method for the eigenvector corresponding to the largest
eigenvalue of A∗A with the initial vector x0 where the vec-
tor x0 has the same angle θ with all the vectors ai and
||x0||2 = sec(θ).

Proof: Consider

v̂1 =
∑

wiai,

where wi = ||ai||2. Rewriting we have

v̂1 = A∗D2e,

where

D2 =


||a1||2 0 0 · · · 0

0 ||a2||2 0 · · · 0
...

...
...

...
...

0 0 · · · 0 ||an||2

 ,

and e = (1, 1, . . . , 1)T . We have

v̂1 = A∗D2e = A∗Ax0.

Therefore we have to solve

Ax0 = D2e,

which translates to

diag [ai · x0] = diag [||ai||2||x0||2 cos(θi)] =

= diag [||ai||2] ,

where θi is the angle between the vector ai and the vector
x0. Thus we have

cos(θi) =
1

||x0||2
,

which is constant for all i.

Naturally we can change the norm wi in the equation 1.
In particular we can setwi = ||ai||1, the l1 norm of ai, which
is the sum of its entries. We get the following result.
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Theorem 2. The approximation

v̂1 =
∑

wiai,

where wi = ||ai||1 is the one step iteration of the power
method for the eigenvector corresponding to the largest
eigenvalue ofA∗Awith the initial vector x0 = (1, 1, . . . 1)T .

Proof: Consider

v̂1 = A∗D2e = A∗Ax0,

with

D1 =


||a1||1 0 0 · · · 0

0 ||a2||1 0 · · · 0
...

...
...

...
...

0 0 · · · 0 ||an||1

 .

We have to solve

Ax0 = D2e,

yielding x0 = e and the result follows.

We can generalize to further lp norms, in particular l∞,
where the norm of a vector is defined by the maximum of the
absolute values of its entries. We can think of the equation
1 as a one step iteration of the power method for A∗A start-
ing with some vector x0. We will show some Banach space
geometry for the various choices of the norms.

The unweighted option approximation consists of imple-
mented column sums (unweighted) in the matrixA. Thus the
jth entry in the approximation vector is just the unweighted
jth column sum of A. This vector can also be used in the ap-
proximation for the vector v1. The given MATLAB R© sim-
ulations below will show its performance for certain random
matrices.

We will consider the normalized vector v̂1 from now on
for our approximation results. To continue with the needed
nomenclature, a Banach space is a complete vector space
which is equipped with a norm. If the norm is induced by
an inner product, then the Banach space in question is called
a Hilbert space. Normalization in the l2 norm is a stan-
dard procedure, however normalization in the l1 norm is
shown here to yield better results overall, in particular bet-
ter approximation results for the dominant singular vectors.
The results obtained are versatile and applications extend to
any relevant areas such as sport team rankings or ranking of
social group interactions. We do not provide a description
for the matrices where the l1 norm yields better approxima-
tion results, however, we provide numerical, empirical and
probabilistic results, where we simulate with random matri-
ces. Employing the three norms l1, l2 and l∞ is done due to
practical considerations, as the norm l3/2 for example would
be less intuitive and more numerically intense.

II. GEOMETRY OF SOLUTIONS

We will explain the geometry how the initial vector x0,
for the power method iteration, is obtained from the row vec-
tors ai.
• The case of l2. Consider the row vector ai. Normal-

ize in the l2 norm and obtain the vector ai. The vec-
tor ai can be thought of as the supporting functional
for the vector ai. Consider the hyperplane passing the
row point ai whose normal vector is the vector ai
(or equivalently ai). Implement this for all row vectors
ai and an intersection point of all the hyperplanes, as
a vector, is the desired vector x0. The vector x0 has
the same angle θ with the vectors ai and its norm is
sec(θ).

• The case of l1. Consider the row vector ai. Choose
the vector (1, 1 . . . , 1)T . This vector can be thought
of as the supporting functional to the vector ai in the
Banach space with the l1 norm. Consider the hyper-
planes passing through the point (1, 1, . . . , 1)T whose
normal vectors are the vectors ai for each i. Clearly an
intersection point is the point (1, 1, . . . , 1)T .

• The case of l∞. Consider the row vector ai. Locate
the maximum entry in the location j and consider the
vector ej with all zero entries except one in the loca-
tion j. If we have multiple entries for the maximum
entry then we can choose any value. Consider the hy-
perplane, for each row vector ai, passing through the
point ej whose normal is the row vector ai. Implement
this for all row vectors ai and an intersection point of
all the hyperplanes is the desired vector x0.

In general, in all of these norm cases the solution vector
x0 lies in the first quadrant. The maximum norm performs
the worst similar to the unweighted column case. For more
on introduction on Banach spaces and supporting functionals
we refer the reader to [6].

III. MATLAB R© SIMULATIONS

We choose random matrices of various sizes with nat-
ural numbers as entries drawn from [1, 100] uniformly dis-
tributed. Entry in Tab. 1 is a pair consisting of the mean and
the standard deviation on the maximum norm discrepancy
between the v1 and v̂1, ||v1 − v̂1||∞. We average out over
10, 000 random matrices.

For larger matrices the discrepancy is smaller, however
it is interesting to note that the 3× 3 matrices perform better
than the 5×5 counterparts for all the three norms in question,
but not the unweighted option. Fig. 1 is the graph for the dis-
tribution of the maximum norm discrepancy between v1 and
v̂1 for million random matrices drawn as above. The vec-
tor v̂1 is obtained via the l1 norm and it is implemented for
10× 10 random matrices described as above.



18 P. Zizler, P. Thangarajah, M. Sobhanzadeh

Tab. 1. The mean and the standard deviation on the maximum norm discrepancy between the v1 and v̂1, ||v1 − v̂1||∞

unweighted l∞ l2 l1

3× 3 {0.0266 0.0204} {0.0128 0.0107} {0.0036 0.0049} {0.0057 0.0067}

5× 5 {0.0256 0.0139} {0.0192 0.0120} {0.0069 0.0058} {0.0064 0.0047}

10× 10 {0.0150 0.0055} {0.0130 0.0050} {0.0045 0.0020} {0.0030 0.0014}

20× 20 {0.0071 0.0019} {0.0064 0.0018} {0.0023 0.0007} {0.0012 0.0004}

50× 50 {0.0022 0.0004} {0.0022 0.0004} {0.0007052 0.000139} {0.0002384 0.0000518}

Fig. 1. Distribution of the maximum norm discrepancy between v1
and v̂1 for million random matrices

IV. RANK ONE MATRICES

Let x and y be unit vectors in Rn. Consider the rank one
matrix

A = xyT .

We implement the SVD decomposition as

[
xx⊥

]T [
xy⊥

] [
yy⊥

]
=

(
1 0
0 0

)
.

The dominant singular value is σ1 = 1 and v1 = y. We have

Av1 = Ay = (xy⊥)y = x = u1.

Note that the approximation for both v1 by v̂1 and u1 by û1
is exact, regardless of the norm. In particular we have

v̂1 = v1 and û1 = u1.

For a very nice exposition on this topic we refer the
reader to [8].

V. SOCIAL NETWORKS

Suppose we have a working group of n people interact-
ing in a group. The interaction quality of the (i, j) interac-
tion is assessed on a quantitative scale [1, 5] with the assess-
ment being a natural number. The (i, j) entry measures how
much the i individual enriched the j individual in the inter-
action. As a result we obtain a n × n matrix A with pos-
itive entries. Note that A need not be a symmetric matrix.
The vector v1 ranks the participants by the amount of benefit
they receive from all the group interactions they had, higher
the value the more benefit the participant received from the
group. On the other hand, the vector u1 ranks the participants
by the amount of benefit they give to the other participants,
higher the value the more benefit the participant gave to all
the group members. The diagonal entry measures the partici-
pant’s ability to perform in the group as an individual. Recall
we have

Av1 = u1.

We give an example with n = 4
4 3 2 4
5 1 2 3
4 2 3 3
2 3 2 5

 .

Here the entry (2, 3) is 2 and it indicates how much the sec-
ond member enriched the third member in the group interac-
tion. We obtain

v1 = [0.6049 0.3671 0.3622 0.6067],

u1 = [0.5388 0.4794 0.4895 0.4901],

and

v̂1 = [0.6015 0.3696 0.3629 0.6082],

û1 = [0.5386 0.4799 0.4897 0.4897].

We see that in this example the rankings of participants
induced by v1 and v̂1 are the same, highest to lowest, 4, 1, 2
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and 3. Similarly, the rankings of participants induced by u1
and û1 are the same as well, highest to lowest, 1, 4, 3 and 2.

We choose 10, 000 random 4 × 4 matrices with entries
natural numbers in [1, 5] uniformly distributed. Note we have
516 of all such matrices. We record the number of times we
have erroneous ranking via the approximation vectors (either
for v1 or u1), see Tab. 2. By an erroneous ranking we mean
a ranking of participants given by v̂1 and û1 that is different
from the ranking given by v1 and u1.

Tab. 2. Number of erroneous rankings for 4 × 4 matrices with en-
tries natural numbers in [1, 5] uniformly distributed

unweighted l∞ l2 l1

4× 4 4040 2725 913 657

For more reading on network analysis we refer the reader
to [3].

VI. SPORT TEAM RANKINGS

Consider a matrix A where the entries in A are positive
values reflecting a certain sport team ability. For example the
entry (i, j) might indicate the number of runs a team i ac-
complished against the team j in a baseball game. The vector
v1 can be thought of as a vector that ranks the teams defen-
sive ability (higher the value weaker on the defense) and the
vector u1 can be thought of as a vector that ranks the team
offensive ability (higher the value stronger on the offense).
The diagonal entry (i, i) is now the average of the ith row
and the ith column as the teams do not play themselves. Re-
call we have

Av1 = u1.

We refer to reader to [2] for ideas on rankings of sport
teams using linear algebra techniques. For more discussion
of ranking techniques in the context of the singular value de-
composition see [4].

We choose 10, 000 random matrices of various sizes with
entries natural numbers in [1, 100] uniformly distributed.
We record the number of times we have erroneous rank-
ing via the approximation vectors (either for v1 or u1), see
Tab. 3. By an erroneous ranking we mean a ranking of sport
teams given by v̂1 and û1 that is different from the ranking
given by v1 and u1.

Tab. 3 indicates the results for ranking using the approx-
imation vectors are not stellar, the l1 norm performing the
best. The ranking using the approximation vectors performs
better for smaller size matrices. We now choose 10, 000 ran-
dom matrices of various sizes with entries natural numbers
in [50, 100] uniformly distributed, which is more realistic in
sport performance. We record the number of times we have

erroneous ranking via either one of the approximation vec-
tors (either for v1 or u1), see Tab. 4.

Tab. 3. Number of erroneous rankings for matrices of various sizes
with entries natural numbers in [1, 100] uniformly distributed

unweighted l∞ l2 l1

3× 3 2508 972 377 325

5× 5 6651 5183 2421 1539

10× 10 9877 9708 7056 4620

20× 20 10000 10000 9853 8033

50× 50 10000 10000 10000 9913

Tab. 4. Number of erroneous rankings for matrices of various sizes
with entries natural numbers in [50, 100] uniformly distributed

unweighted l∞ l2 l1

3× 3 916 434 36 31

5× 5 3067 2528 272 182

10× 10 7759 7340 1244 690

20× 20 9921 9898 3627 1750

50× 50 10000 10000 8504 4206

The approximation results are better now, especially for
smaller size matrices. For example for a 5 × 5 matrix the
chance of an erroneous ranking in this setting appears to be
less than 2%.

VII. THE l1 NORM VS. l2 NORM

Putting ranking aside let us consider the question as to
how well the vector v̂1 approximates the vector v1 in the l∞

norm. It turns out in larger size matrices the l1 norm per-
forms better than the l2 norm. The fact that the l1 norm per-
forms better than the l2 norm is equivalent to asserting that
the one step power method for the largest eigenvalue ofA∗A
starting with the vector (1, 1, . . . , 1)T approximates the vec-
tor v1 better than starting the one step power method with
the vector x0, a vector that has the same angle θ with all the
row vectors ai of A. The vector x0 has magnitude sec (θ).

Fig. 2 plots the proportion of random matrices with en-
tries natural numbers uniformly distributed in [1, 5] of vari-
ous sizes for which the l1 norm performs better than the l2

norm. The horizontal axis plots the sizes of the matrices and
the vertical axis plots the proportion. We have simulated our
results on 100, 000 random matrices. For matrices of sizes
2, 3 and 4 the l1 norm performs worse overall than the l2

norm and for sizes n = 5 and larger it is the reverse.
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Fig. 2. Proportion of random matrices with entries natural numbers
uniformly distributed in [1, 5] for which the l1 norm performs better
than the l2 norm. The horizontal axis plots the sizes of the matrices
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