• CONTACT
  • LAST ISSUE
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 31 (1–3) 2025, 63–66

Odd Spoof Multiperfect Numbers of Higher Order

Tóth László

Grand Duchy of Luxembourg
L-8476 Eischen
E-mail: uk.laszlo.toth@gmail.com

Received:

Received: 21 March 2025; accepted: 5 August 2025; published online: 10 September 2025

DOI:   10.12921/cmst.2025.0000006

Abstract:

We extend our previous work on odd spoof multiperfect numbers to the case where spoof factor multiplicities exceed 2. This leads to the idenfitication of 11 new integers that would be odd multiperfect numbers if one of their prime factors had higher multiplicity. An example is 181 545, which would be an odd multiperfect number if only one of its prime factors, 3, had multiplicity 5.

Key words:

Descartes numbers, multiperfect numbers, odd perfect numbers

References:

[1]  N. Andersen, S. Durham, M. Griffin, J. Hales, P. Jenkins, R. Keck, H. Ko, G. Molnar, E. Moss, P. Nielsen, K. Niendorf, V. Tombs, M. Warnick, D. Wu, Odd, spoof perfect factorizations, J. Number Theory 234, 31–47 (2022).

[2] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63, 187–213 (1984).

[3] L. Tóth, On the Density of Spoof Odd Perfect Numbers, Comput. Methods Sci. Technol. 27(1), 25–28 (2021).

[4]  L. Tóth, Odd Spoof Multiperfect Numbers, Integers 25, Art. A19 (2025).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_27_3_2021_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
  • ALL ISSUES

    • 2025
      • Volume 31 (1–3)
    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST