• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 23 (4) 2017, 305–316

Monte-Carlo Simulations of Two-Dimensional Polymer Solutions with Explicit Solvent Treatment

Polanowski Piotr, Jeszka Jeremiasz, Sikorski Andrzej

1 Department of Molecular Physics, Technical University of Łódź, 90-924 Łódz, Poland

2 Department of Man-Made Fibres, Technical University of Łódź, 90-924 Łódz ́, Poland

3 Department of Chemistry, University of Warsaw Pasteura 1, 02-093 Warszawa, Poland
*E-mail: sikorski@chem.uw.edu.pl

Received:

Received: 06 November 2017; revised: 04 December 2017; accepted: 08 December 2017; published online: 31 December 2017

DOI:   10.12921/cmst.2017.0000050

Abstract:

he static properties of two dimensional athermal polymer solutions with explicit solvent molecules were studied by Monte Carlo lattice simulations using the cooperative motion algorithm (CMA). The simulations were performed for a wide range of polymer chain length N (from 16 to 1024) and polymer concentration (from 0.0156 to 1.00). The results obtained for short chains (N < 256) were in good agreement with theoretical predictions and previous simulations. For the longest chains (512 or 1024 beads) some unexpected behavior in the dilute and semidilute regimes was found. A rapid change in the concentration dependence of the end-to-end distance, the radius of gyration and the chain asphericity was observed below a critical concentration of the microphase separation, φc = 0.6 (for N = 1024). At concentrations lower than φc, the chains tends to be more rod-like. Single chain scattering structure factors showed changes in the fractal dimension of the chain as a function of the polymer concentration. The observed phenomena can be related to the excluded volume of solvent molecules, which leads to a modification of chain statistics in the vicinity of other chains.

Key words:

cooperative motion algorithm, lattice models, Monte Carlo simulations, polymer melts, thin films

References:

[1] A. Yethiraj, Computer Simulation Study of Two-Dimensional Polymer Solutions, Macromolecules 36, 5854–5862 (2003).
[2] C. Vlahos, M. Kosmas, On the miscibility of chemically identical linear homopolymers of different size, Polymer 44, 503–507 (2003).
[3] B. Maier, J. O. Radler, Conformation and Self-Diffusion of Single DNA Molecules Confined to Two Dimensions, Phys. Rev. Lett. 82, 1911–1914 (1999).
[4] B. Maier, J. O. Radler, DNA on Fluid Membranes: A Model Polymer in Two Dimensions, Macromolecules 33, 7185–7194 (2000).
[5] B. Maier, J. O. Radler, Shape of Self-Avoiding Walks in Two Dimensions, Macromolecules 34, 5723–5724 (2001).
[6] Y. M. Wang, I. Teraoka, Structures and Thermodynamics of Nondilute Polymer Solutions Confined between Parallel Plates, Macromolecules 33, 3478–3484 (2000).
[7] I. Teraoka, Y. M. Wang, Crossover from Two- to Three-Dimensional Contraction of Polymer Chains in Semidilute Solutions Confined to a Narrow Slit, Macromolecules 33, 6901–6903 (2000).
[8] H. Aoki, S. Morita, R. Sekine, S. Ito, Conformation of Single Poly(methyl methacrylate) Chains in an Ultra-Thin Film Studied by Scanning Near-Field Optical Microscopy, Polymer J. 40, 274–280 (2008).
[9] H. Aoki, M. Anryu, S. Ito, On the Miscibility of Chemically Identical Linear Homopolymers of Different Size, Polymer 46, 5896–5902 (2005).
[10] P. K. Lin, C. C. Fu, Y. L. Chen, Y. R. Chen, P. K. Wei, C. H. Kuan, W. S. Fann, Static Conformation and Dynamics of Single DNA Molecules Confined in Nanoslits. Phys. Rev. E 76, 011806 (2007).
[11] J. Sakamoto, J. van Heijst, O. Lukin, A. D. Schlüter, Two-Dimensional Polymers: Just a Dream of Synthetic Chemists?, Angew. Chem.-Int. Edit. 48, 1030–1069 (2009).
[12] P. P. Wen, N. Zheng, L. S. Li, G. Sun, Q. F. Shi, Polymerlike Statistical Characterization of Two-Dimensional Granular Chains, Phys. Rev. E 85, 031301 (2012).
[13] H. Meyer, J. P. Wittmer, T. Kreer, A. Johner, J. Baschnagel, Static Properties of Polymer Melts in Two Dimensions, J. Chem. Phys. 132, 184904 (2010).
[14] V. Vaidya, S. Soggs, J. Kim, A. Haldi, J. M. Haddock, B. Kippelen, D. M. Wilson, Comparison of Pentacene and Amorphous Silicon AMOLED Display Driver Circuits, IEEE Transaction on Circuits and Systems 55, 1177–1184(2008).
[15] P. G. De Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, 1979.
[16] P. H. Nelson. T. A. Hatton, G. C. Rutledge, General Reptation and Scaling of 2D Athermal Polymers on Close-Packed Lattices, J. Chem. Phys. 107, 1269–1278 (1997).
[17] P. Adamczyk, P. Polanowski, A. Sikorski, Percolation in Polymer-Solvent Systems: A Monte Carlo Study, J. Chem. Phys. 131, 234901 (2009).
[18] S. Żerko, P. Polanowski, A. Sikorski, Percolation in Two-Dimensional Systems Containing Cyclic Chains, Soft Matter 2012, 8, 973–979.
[19] M. Bishop, C. J. Saltiel, The Shapes of Two-, Four-, and Five-Dimensional Linear and Ring Polymers, J. Chem. Phys. 85, 6728–6731 (1986).
[20] I. Carmesin, K. Kremer, Static and Dynamic Properties of Two-Dimensional Polymer Melts, J. Phys. (France) 51, 915–932 (1990).
[21] H. Meyer, T. Kreer, M. Aichele, A. Johner, J. Baschnagel, Perimeter Length and Form Factor in Two-Dimensional Polymer Melts, Phys. Rev. E 79, 50802 (2009).
[22] P. Polanowski, J. K. Jeszka, Microphase Separation in Two-Dimensional Athermal Polymer Solutions on a Triangular Lattice, Langmuir 23, 8678–8680 (2007).
[23] P. Polanowski, J. K. Jeszka, A. Sikorski, Monte-Carlo Studies of Two-Dimensional Polymer-Solvent Systems, J. Mol. Model. 23, 63 (2017).
[24] P. Polanowski, J. K. Jeszka, A. Sikorski, Dynamic Properties of Linear and Cyclic Chains in Two Dimensions. Computer Simulation Studies, Macromolecules 47, 4830–4839 (2014).
[25] T. Pakula, Cooperative Relaxations in Condensed Macromolecular Systems. 1. A Model for Computer Simulation, Macromolecules 20, 679–682 (1987)
[26] J. Reiter, Monte Carlo Simulations of Linear and Cyclic Chains on Cubic and Quadratic Lattices, Macromolecules 23, 3811–3816 (1990).
[27] T. Pakula, S. Geyler, Cooperative Relaxations in Condensed Macromolecular Systems. 2. Computer Simulation of Self-Diffusion of Linear Chains, Macromolecules 20, 2909–2914 (1987).
[28] S. Geyler, T. Pakula, J. Reiter, Monte Carlo Simulation of Dense Polymer Systems on a Lattice, J. Chem. Phys. 92, 2676–2680 (1990).
[29] J. Reiter, T. Edling, T. Pakula, Monte Carlo Simulation of Lattice Models for Macromolecules at High Densities, J. Chem. Phys. 93, 837–844 (1990).
[30] P. Polanowski, T. Pakula, Studies of Polymer Conformation and Dynamics in Two Dimensions Using Simulations Based on the Dynamic Lattice Liquid (DLL) Model, J. Chem. Phys. 117, 4022–4029 (2002).
[31] S. Wołoszczuk, M. Banaszak, S. Jurga, M. Radosz, Low-Temperature Extra Ordering Effects in Symmetric Block Copolymers from Lattice Monte Carlo Simulation, Comput. Methods Sci. Technol. 10, 219–228 (2004).
[32] T. Pakula, D. Vlassopoulos, G. Fytas G., J. Roovers, Structure and Dynamics of Melts of Multiarm Polymer Stars, Macromolecules 31, 8931–8940 (1998).
[33] T. Pakula, Computer Simulation of Polymers in Thin Layers. I. Polymer Melt Between Neutral Walls – Static Properties, J. Chem. Phys. 95, 4685–4690 (1991).
[34] J. Des Cloizeaux, G. Jannik, Polymers in Solution. Their Modelling and Structure, Clarendon Press, Oxford, 1990.
[35] Teraoka, Polymer Solutions – An Introduction to Physical properties, Wiley-Interscience, New York, 2002.
[36] J. A. Aronowitz, D. R. Nelson, Universal Features of Polymer Shapes, J. Phys. (France) 47, 1445–1456 (1986).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST