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Abstract: The static properties of two dimensional athermal polymer solutions with explicit solvent molecules were studied

by Monte Carlo lattice simulations using the cooperative motion algorithm (CMA). The simulations were performed for

a wide range of polymer chain length N (from 16 to 1024) and polymer concentration (from 0.0156 to 1.00). The results

obtained for short chains (N < 256) were in good agreement with theoretical predictions and previous simulations. For the

longest chains (512 or 1024 beads) some unexpected behavior in the dilute and semidilute regimes was found. A rapid change

in the concentration dependence of the end-to-end distance, the radius of gyration and the chain asphericity was observed

below a critical concentration of the microphase separation, φc = 0.6 (for N = 1024). At concentrations lower than φc, the

chains tends to be more rod-like. Single chain scattering structure factors showed changes in the fractal dimension of the

chain as a function of the polymer concentration. The observed phenomena can be related to the excluded volume of solvent

molecules, which leads to a modification of chain statistics in the vicinity of other chains.
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I. INTRODUCTION

The behavior of polymer chains confined to two-

dimensional systems has been attracting considerable interest

in last recent years [1–13]. It is important for understand-

ing the properties of macromolecules strongly adsorbed on

surfaces, including biological systems. It may be also be

considered as a limiting case of ultrathin polymer films and

intercalated layered silicates. Investigation of polymer ultra-

thin films has also recently become one of the most inter-

esting directions in material sciences. This fact is connected

with an enormous success of organic electronics, which of-

fer unique advantages when compared to amorphous silicon

electronics [14]. These advantages include high-throughput,

inexpensive production, mechanical flexibility, lightweight,

efficient integration within electronic circuits and low power

consumption. The above advantages make technology based

on ultrathin organic films very promising. On the other hand,

the case of a two-dimensional athermal polymer solution is

very interesting from the theoretical point of view in polymer

physics. This arises from the fact that strong excluded vol-

ume interactions expected here lead to the behavior which

cannot be observed in the three-dimensional case. Moreover,

two-dimensional systems, treated for many years in poly-

mer physics as strictly theoretical, have been obtained in a

series of experiments. Maier and Radler used labeled DNA

molecules absorbed on the surface of charged lipid bilay-

ers [3, 4]. Lin at al. studied labelled DNA conformations in

nanoslits [10]. Aoki et al. studied ultrathin layers of perylene-

labeled poly(isobutyl methacrylate) (prepared via Langmuir-

Blodgett or spin coating techniques) using near-field optical

microscopy [8, 9]. Macromolecules intercalated in layered sil-
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icates are also practically confined to two-dimensional space;

in this case experimental determination of their conforma-

tions was performed in a very nice experiment [12]. These

experiments, in which conformations of single chains have

been directly observed show that in such case conformational

properties exhibit two-dimensional behavior and are in good

agreement with theoretical predictions.

There was a controversy in the literature, however, about

the behavior of long chains in two-dimensional systems. De

Gennes suggested that such chains could not interpenetrate

and at high concentrations they should adopt disc-like con-

formations with other chains being practically excluded from

the surface occupied by a given coil [15]. However, com-

puter simulations did not confirm such an effect, although it

should be noted that the simulated chains were rather short

and consisted of 100 [16] or 256 [1, 7] beads. Meyer et al. ob-

served non-Gaussian behavior of long chain shape in a dense

two-dimensional polymer system using molecular dynamic

simulation [13] but this kind of behavior was not confirmed

yet by direct observation in a scattering experiment [12]. On

the other hand, Vlahos and Kosmas [2] analyzed the effect of

interaction parameters and chain length on phase diagrams of

polymer mixtures using the Edwards-type Hamiltonian. Their

results indicate the possibility of phase separation in mixtures

of chemically identical linear homopolymers of different sizes

over some range of chain disparity and concentration. This

phase separation should also result in significant changes

of the conformational properties of the chains. Experiments

provide detailed information about chain conformations in

dilute solutions [3, 4] and in dense systems [12] but the con-

centration region between 0.1 and 0.9 is known very little

except the percolation problem of polymer chains in two-

dimensions [17, 18]. Therefore, computer simulation should

be a method of choice in this case. Such studies in a two-

dimensional case have been performed using various methods:

reptation method, [16] , self avoiding random walk (SAW) [5]

Brownian dynamics [19], bond fluctuation model [20], off-

lattice MC simulations [1] and molecular dynamics [21] but

the range of the chain length and concentration have not been

wide enough to unambiguously exclude or confirm certain

effects.

In our previous papers [18, 22–24] we have reported

on the results of Monte Carlo simulations concerning two-

dimensional athermal solutions of linear polymer chains us-

ing the cooperative motion algorithm (CMA) and Dynamic

Lattice Liquid (DLL) model invented by T. Pakula [25–27].

This algorithm makes it possible to conduct simulations of

dense systems (up to concentration φ = 1) and is efficient

enough to carry out stimulations for long chains (up to 1024

in this case). We have shown that the behavior of concentrated

solutions of long chains is qualitatively different from that

obtained for shorter chains and for the longest chains studied

(512 and 1024) a sort of microphase transition was observed

(domains of pure solvent of the order of the chain size ap-

peared). The problem of chain packing in two dimensions

and the question of the existence of a microphase separation

at moderate polymer densities of long macromolecules can

be supported by additional arguments which are discussed

herein. In this paper we also present a detailed analysis of

the influence of concentration on the chain size and structure

over a full range of concentration.

II. SIMULATION METHOD

In simulations using the cooperative motion algorithm

(CMA), ensembles of beads located at lattice sites are con-

nected by non-breakable bonds to form structures represent-

ing macromolecules [25–31]. All the lattice sites are occupied

by polymer beads or solvent molecules, thus the model repre-

sents dense systems, including polymer melts. The presented

results were obtained by simulations on a two-dimensional

triangular lattice. The coordination number of the lattice is

equal to 6, i.e. every monomer has 6 nearest neighbors. The

bond length is equal to 1.

Each lattice site can be occupied by a single molecular ele-

ment only (chain bead or solvent particle);, thus, the excluded

volume condition is introduced into the system. In such a

system strictly cooperative dynamics is used, consisting in

rearrangements satisfying the local continuity condition (no

empty lattice sites are generated). A segment of one chain

can move only if the neighboring segments of the same chain

of different chains or the solvent move simultaneously. This

It is realized by local motions consisting of displacements of

a certain number of molecular elements along closed loops,

so that each element replaces one of its neighbours in such

a way that the sum of displacements of the elements taking

part in the rearrangement is zero (continuity condition). Dur-

ing such rearrangements macromolecules undergo conforma-

tional transformations preserving their identities. If available

conformations of a chain are restricted by the presence of

parts other chains, it is “adjusted automatically” by the feasi-

bility of closing the displacement loops involving this confor-

mation. The CMA model has been successful in simulations

of macromolecular systems like multiarm stars, [32], cyclic

chains [18] or linear chains in a confined space [22–23].

Parameters characterizing the system are calculated be-

tween cooperative rearrangement steps. A time unit corre-

sponds to the number of simulation steps after which an

average of one attempt to move each polymer bead was

made. Ergodicity of the CMA algorithm has not been rig-

orously proved for any polymer system but it was shown for

dimers [25]. The requirement of a detailed balance reduces

in the athermal polymer system to showing that transition

probabilities between two neighboring are equal. In the algo-

rithm two such states are always reversible and are separated

by cooperative rearrangements along cooperative loops of

the same size and form but different motion directions. Be-

cause the loop consists of vectors that are pointing with equal
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probability in any direction, this condition is satisfied. As the

loops are independent of the structure it remains valid for any

polymer system. The detailed description of this algorithm is

given elsewhere [25–27].

The system under consideration was a two-dimensional

solution or melt of flexible polymer chains immersed in a sol-

vent. The size of solvent molecules was the same as that of the

polymer beads. The system was put into box 256×256 beads

with periodic boundary conditions in all directions. Therefore,

the system was larger than the average end-to-end distance of

the longest simulated chains (1024 beads). To ensure that the

effects observed for the longest chains (N = 1024) would not

arise because the finite size of the system (especially for low

concentrations) we performed also performed simulations in

a box consisting ofed 512 × 512 sites. The obtained results

were found practically identical.

The polymer concentration φ is defined as the ratio of

the number of sites occupied by polymer beads to the total

number of lattice sites. Therefore, φ = 1 corresponds to the

cases where all sites are occupied by polymer beads. As we

must have an integer number of chains in the Monte Carlo

box imposes restrictions on the concentrations studied. For in-

stance, for polymers N = 1024, one chain in the box means

that φ = 1024/2562 = 0.015625, and for two such chains

φ = 0.03125, etc. It should be noted that this definition of

the polymer concentration differs from that used in off-lattice

polymer models. For instance, Yethiraj [1] defines the con-

centration as the ratio of the sum of the surfaces of the disks

representing polymer monomers to the area of the simula-

tion system. It means that according to the latter definition

the maximum concentration available corresponds to close

packing of disks, so it is equal to ca. 0.9069 and the related

correction factor should be used when comparing our results.

At the beginning of the simulations polymer chains were

initially fully extended in the x direction (and folded if nec-

essary). The equilibration of the system was monitored by

observation of several parameters. It was found that all the

monitored quantities (defined in the next section) reached

equilibrium values after approximately the same time. An

example of such time dependence of Rg has been shown in

Ref. [22]. The equilibrated systems obtained in this way are

used as input system in the production simulations presented

and discussed below. For each set of parameters many simu-

lation runs starting from different configurations were carried

out.

III. PARAMETERS DETERMINED

The structure of the chains in the simulations were de-

scribed by the following parameters:

– the mean-squared radius of gyration
〈

R2
g

〉

〈

R2
g

〉

=

〈

1

N

N
∑

i=1

(ri − rcm)
2

〉

(1)

where N is the total number of polymer beads constituting the

chain and rcm is the coordinate of the chain center-of-mass;

– the mean-squared end-to-end distance

〈

R2
ee

〉

=
〈

(r1 − rN )
2
〉

, (2)

where r1 and rN are coordinates of chain ends;

– the gyration tensor T

Tkl =

〈

1

N

N
∑

i=1

(rik − rcm,k) (ril − rcm,l)

〉

, (3)

where k and l are the coordinates x and y, rik is the k-th co-

ordinate of the position ri and is the rcm,k k-th coordinate of

the chain center-of-mass. The gyration tensor T has two eigen-

values denoted as λ1 and λ2 (with the conventionλ1 ≥ λ2),

which fulfill the relation:

R2
g = λ1 + λ2, (4)

– the asphericity parameter A2, defined as

A2 =

〈

(λ1 − λ2)
2
〉

〈

(λ1 + λ2)
2
〉 , (5)

which means that A2 = 1 for a fully extended chain (a rod)

and A2 = 0 for a disk;

– the intramolecular bead-to-bead correlation function of

polymer beads separated by the distance r = |ri − rj |

γ (r) =
1

N
〈c (ri) · c (rj)〉 , (6)

where c is a contrast operator assuming value of 1 for the

sites occupied by elements of the same chain and assuming 0

everywhere else;

– the static form factor:

S (q) =
∑

ij

γ (r)
sin (qr)

qr
, (7)

where q is the scattering vector and γ denotes the bead-to-

bead correlation function defined by Eq.(6).

Chain packing can be characterized by the pair center-of-

mass correlation function which was calculated according the

formula:

gcm−cm (r) =
1

φ2

〈

n
∑

i

n
∑

j

δ (ri) δ (rj − r)

〉

, (8)

where rj denotes the position of the center-of-mass of the

j-th chain.

IV. RESULTS AND DISCUSSION

IV. 1. Chain size

Figure 1 shows the chain length dependence of the mean-

squared end-to-end distance for various polymer concen-

trations. A very similar picture was obtained for the mean
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Fig. 1. Chain length dependence of R2

ee for various concentrations (from 0.05 to 1.0). The thicker line corresponds to the concentration
φ = 0.4

squared radius of gyration. In principle both quantities should

scale with the chain length as
〈

R2
g

〉

∝
〈

R2
ee

〉

∝ N2ν (9)

where ν is the scaling exponent [15, 34–35]. In a good solvent

2ν for two-dimensional systems should vary between 1 (for

an ideal chain or a chain in melt) and 1.5 (for dilute solu-

tions). In Fig. 1 one can see that although this relationship is

generally fulfilled, there are some significant deviations from

linearity. For example, the curve corresponding to φ = 0.4
(marked using the thicker line) has an s-like shape. Its slope

equals to ca. 1.25 for short chains but above N = 80 it de-

creases, becomes equal to 1 for N = 160 and then increases

again and even exceeds slightly 1.5 for N > 256. Such an

effect is observed because the solutions of short chains are

semidilute or dilute at the same concentration, whereas solu-

tions of long chains are in a concentrated regime. This effect

is related to the concentration dependent correlation length

of the chain in the semidilute regime, described also using

the concept of blobs [15] (see below). Thus, a decrease in

the slope with increasing chain length is in agreement with

theoretical predictions. What is surprising is that ν increases

again for the longest chains. An increase of 2ν above the

theoretical value of 1.5 over the intermediate concentration

range may be explained by the phase separation effect; [22],

however, it is clearly seen also for the lowest concentration

studied (ca. 0.05). It seems, therefore, to be related to strong

excluded volume interactions in two-dimensional systems

when solvent molecules are explicitly taken into account,

which leads to a more rod-like shape of chains (as discussed

in the following sections).

Fig. 2. Concentration dependence of R2

ee for various chain lengths.
The error bars are also shown for N > 64. The inset shows the

results for the longest chains in double logarithmic coordinates
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Figure 2 shows the mean squared end-to-end distance as

a function of the polymer concentration for various chain

lengths. For better illustration of conformational changes the

inset with results presented in double logarithmic coordinates

(for the long chains) was added to this Figure. One can see

that in all cases R2
ee decreases with the increasing polymer

concentration as predicted by various theories. The follow-

ing scaling prediction has been suggested basin on scaling

considerations [15].
〈

R2
g

〉

∝
〈

R2
ee

〉

∝ φ(1−2ν)/(dν−1) (10)

where d = 2 is the spatial dimension of the system. In the

two-dimensional case R2
ee ∼ R2

g ∼ φ−1. It can be seen in

Figure 2 that this scaling behavior is valid for high concen-

trations only whereas the concentration dependence levels

off for diluted systems. One can observe that for the longest

chains under consideration (N = 512 and N = 1024) there

is clearly a transition between the semidilute regime and the

concentrated regime. This transition has been already inter-

preted by us [22, 24] as a result of a microphase separation in

the concentration range of 0.5÷0.3 for N = 512 and 0.2-0.6
for N = 1024. It has to be pointed out that in the phase sepa-

ration region the chain size considerably increases and it is

not constant as it could be expected. This increase is related

to the fact that microdomains of the solvent are surrounded by

stretched parts of some of the chains. The concentration de-

pendence of R2
ee and R2

g is usually observed above ca. 0.2φ∗,

where φ∗ is an overlap concentration that is defined as equal

to the concentration inside a isolated coil. There are several

definitions relating φ∗ to Ree0 or Rg0(Ree or Rg at infinite

dilution) [34–35]. The values obtained differ slightly, espe-

cially for non-ideal chains, which is however of secondary

importance, however, because interactions of the chains at this

concentration are still important in any case. We used the def-

inition φ∗ = 2N/Ree0 [15, 34] with a correction factor 0.866

to account for the number of the lattice sites per unit area on

a triangular lattice. The problem in the simulations of long

chains is that it is hard to reach the limit of unperturbed coil

dimension Ree0. The simulations for very low concentrations

are extremely time consuming because there are few chains

in the simulation box so a very long time is needed to obtain

sufficient statistics. As can be seen in Fig. 2, for N > 128
there is no indication of leveling off of Ree. Thus, for the

longest chains, we estimated the unperturbed coil dimension

by somewhat arbitrary extrapolation to φ = 0. The resulting

φ∗ varies from 0.0316 for N = 1024 to 0.447 for N = 32.

It can be concluded that for the shortest chains the simulated

concentration range corresponds mostly to diluted solutions

and the range of semidilute solutions is quite narrow, whereas

for the highest N , the simulations cover mostly the semidilute

and concentrated regimes. Indeed, 2v = 1 for high concen-

trations, whereas 2ν exceeds even 1.5 and approaches 1.7 for

low concentrations. A higher critical exponent results also

in a fast decrease in φ∗ with N , faster than N−1/2 expected

by the scaling theory. Recent simulations have shown that

this anomalous behavior of chains’ asphericity was a result of

explicit solvent treatments. In our model solvent molecules

could not overpass the chain in two dimensions. In order to

check what was the influence of the lack of possibility of

solvent exchange was we carried out simulations in a two

layer simulation box (quasi two-dimensional system) [23].

For this two- layer model the chain size for concentrations

above the phase separation is the same but in the case of the

two- layer system no anomalous increase is observed for low

concentrations.

Fig. 3. Scaling plot showing the chain contraction with increasing
polymer concentration – the reduced size R2

g/R
2

go as a function of
the polymer reduced concentration φ/φ∗ (see text for details). The

thicker solid line is drawn according to Eq. 11

In Figure 3 the concentration dependence of Rg for differ-

ent chain lengths N is presented in the reduced coordinates:

Rg/Rg0 vs. φ/φ∗ in a double logarithmic scale. The master

curve (shown as a solid line in Figure 3) can be described by

the formula:

Rg/Rg0 = [1 + 0.75(φ/φ∗)2]−0.445 (11)

which is simpler than that proposed by Teraoka and Wang [7]

and gives a better fit in our case. At high reduced concentra-

tions the slope is slightly lower than one (0.89). Lower slopes

were also observed in lattice [7] and off-lattice simulations [1

] but it could appear because the chains were not long enough

to observe the theoretical slope equal to one. In our case it

may also be related to higher 2ν exponent observed for the

longest chains. It can be seen that the results for the chains

N < 512 fit the master curve well. However, for the longest

chains (N = 512 and 1024) the results clearly deviate from

the master curve over the concentration range correspond-

ing to the phase-separated systems: φ/φ∗ range (1-20) for

N = 1024 and (1-8) for N = 512. The values of Rg in the

semidilute range are definitely larger than expected but they

come back on the master curve for the highest concentrations.

In spite of a larger range of φ and N studied, we have never
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Fig. 4. The reduced center-of-mass correlation functions gcm−cm/r for various chain lengths at φ = 1 (a) and φ = 0.5 (b)

observed an increase in Rg for highest concentrations found

in [1].

Fig. 5. Mean eigenvalues of the gyration tensor plotted as function of
concentration for various chain lengths. The inset shows a compari-
son of λ1 and λ2 for long chains in double logarithmic coordinates.
The same symbols (full or empty) correspond to the same chain
length on all panels. The crosses in the inset show the results for

N = 1024 obtained for a simulation box of doubled size

IV. 2. Chain shape and packing

Two scenarios have been suggested for chain packing

in 2D. It is argued in the first one that chains cannot inter-

penetrate and therefore polymer coils must be segregated

disks [15]. Such a segregation results in a very deep corre-

lation hole because other chains are almost excluded from

a region of the order of the size of a single chain. On the

other hand, the scaling theory indicates the interpenetration

of chains in the semidilute regime [34]. In order to get the

insight into the chain packing we calculated a pair center-of-

mass correlation function defined by Eq. (8). Thus, in Figures

4a and 4b we present in the reduced form, gcm−cm/r for

various chain lengths plotted in reduced coordinates r/Rg for

concentrations φ = 0.5 and φ = 1.0, respectively. One can

observe in Figure 4a that in polymer melts, i.e. at φ = 1.0,

the interpenetration of chains increases with the increasing

chain length. It means that, in a dense system, the exclusion

of other chains is strong and the chain shape is more disc-like,

although a tendency to penetrate other chain coil increases

with the increasing chain length. For the a lower concentration

(φ = 0.5) one can find that differences in the interpenetration

are smaller with the exception of short chains. The correlation

hole for short chains N = 32 (as a fraction of Rg) is wider,

which suggests that short chain coils are more separated from

each other. It can be due to a more oblate shape of long chain

coils and/or an irregular shape of many of them, which makes

their interpenetration more likely (the chain interpenetration

is usually understood as penetration into the circle of a radius

equal to Rg, thus, rod-like chains interpenetrate more than

disc-like ones).

It is also interesting to examine how the chain shape

changes with the increasing polymer concentration for short

and long chains. It can be performed by monitoring the ein-

genvalues of the tensor of gyration, λ1 and λ2, which corre-

spond to moments of inertia about principal axes. The bigger

the difference between λ1 and λ2 is, the more rod-like the

chain is. Figure 5a-b presents λ1 and λ2 as functions of φ for
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various chain lengths. It can be seen that generally both λ1

and λ2 increase with the decreasing polymer concentration.

However, for long chains, λ1 increases abruptly below the

phase transition in a similar manner as Ree and Rg (Fig. 2).

On the contrary, λ2 increases slowly and smoothly in this

concentration range for all chain lengths (the behavior of λ1

and λ2 of long chains is also compared in the inset to Figure

5b where they are presented in a double logarithmic scale).

Thus, the microphase separation seems to affect only λ1 and

not λ2. By contrast, the coil expansion in diluted solutions

for N = 1024 and 512 is accompanied by a decrease in λ2 –

the chains become increasingly rod-like.

Fig. 6. λ2/λ1 ratio and the asphericity parameter A2 for chains of
various lengths plotted vs. the polymer concentration

Figure 6a presents changes of the principal axis ratio

λ2/λ1 with the polymer concentration. This ratio increases

rather weakly for shorter chains (N < 256, thin lines). For

longer chains (N = 512 and 1024) one see a non-monotonic

behavior and minima on the curves at the concentration range

where a phase separation was suggested. The asphericity pa-

rameter calculated according to eq.(5) is shown as a function

of φ in Figure 6b. For N < 256 (thin lines) one can see only

a small decrease in A2 with increasing φ. Similar behavior is

observed for long chains at φ higher than the critical concen-

tration of the microphase separation (φ ∼= 0.6). In a concen-

trated solution and in a melt short chains N > 16 exhibit a

very similar asphericity, A2 = 0.52, which is slightly below

the theoretically predicted value of 0.59 [36] or 0.52÷ 0.62
found in other simulations [1, 19]. Low values of A2 for

N < 32 result probably result from the lattice effect. At

low concentrations the asphericities for 32 < N < 512 are

also in reasonable agreement with the reported data [1]. The

values obtained in off-lattice simulations [1] for short and

long chains are very similar. The concentration dependence

of A2 for the longest chains is very different. At low φ the

asphericity is very high and rapidly decreases with increasing

φ. However, it increases again in the semi-dilute region. Over

the concentration range corresponding to the phase separated

systems the asphericity of long chains is high, which is most

probably related to anomalous stretching of the chains on the

solvent domain boundaries and exhibits considerable scatter-

ing. Close to the critical concentration for the microphase

separation, A2 falls down rapidly and levels-off at higher

concentrations. Generally, at low concentrations the longest

chains have a more oblate, rod-like shape than the short ones,

in contrast to the concentrated regime where all chains have

similar A2 and are more similar to disks.

Changes of the chain shape also have also an influence

on the R2
ee/R

2
g ratio. This parameter is equal to 6 for an ideal

chain and, if the excluded volume effect is taken into account,

the power series expansion gives the values of 7.509 (for the

two dimensional case) [34]. Thus, one should expect R2
ee/R

2
g

to increase from 6 in melt and concentrated solutions (where

the scaling behavior of R2
ee and R2

g is nearly ideal) to ca. 7.5
in dilute solutions. The results of simulations are presented

in Figure 7.

Fig. 7. Ree
2/Rg

2 ratio for chains of various lengths plotted vs. the
polymer concentration

Generally, an increase, from ca. 5.5 to over 7, is observed

when the concentration decreases. For short chains (N <
128) the increase is monotonic, nearly linear. However, for
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Fig. 8. Single chain scattering factor for various concentrations for chains N = 512 (a). The inset shows an enlarged central portion of the
plot for φ = 0.5 (thicker line) to show the slope change at q corresponding to the correlation length. Scaling exponents determined form the

slopes of linear parts of S(q) vs. q plots at small q (empty symbols) and large q (full symbols) for various chain lengths (b)

N > 128, one can see a qualitative difference: at high concen-

trations the R2
ee/R

2
g ratio is practically concentration indepen-

dent (in the semidilute regime it even slightly falls down) and

rapidly increases in dilute solutions. In other words, this is

the next confirmation that the long chains in a diluted regime

are more rod-like (for rigid rods R2
ee/R

2
g = 12). A similar

dependence can be obtained from the results of off-lattice

simulations (for chain lengths up to 256 and concentrations

below 0.6) [1].

IV. 3. Chain structure

The structural properties of polymer chains can be an-

alyzed using the static form factor. Considering a disk of

radius r around a given bead in which there are k beads from

the same chain, then the intramolecular bead-to-bead corre-

lation function defined in Eq.(6) scales as γ (r) ∝ k/r2. If

the mean square end-to-end distance scales with the num-

ber of segments as R2
ee ∼ k2ν , then γ (r) ∝ r

1

ν
− 2. Taking

the Fourier transform and using the scaling theory one can

obtain [1]

S (q) ∝ q−
1

ν (12)

The situation is more complicated in semidilute solutions

when macromolecules behave as ideal chains of “blobs” [15].

In such a case the scaling exponent should be equal to 3/4

within a correlation length, ξ, and equal to 0.5 on a large

scale. The slope should change here from ca. –4/3 to –2

around q = 2π/ξ on the plot of logS(q) vs. log q. Such

an effect was indeed observed for simulated chains up to

N = 100 [19].

Figure 8a presents a single chain structure factor as a func-

tion of the scattering vector, q, for the chain length N = 512
at various polymer concentrations. One can find that the pre-

sented results for high and low concentrations are in agree-

ment with the fractal scattering law (Eq. 12), i.e. the slopes

of these curves in Figure 8a are equal to −4/3 and −2, re-

spectively. We would like to stress that results obtained for

very high concentration of chains (φ ≈ 1.0) are in perfect

agreement with a scattering experiment [12]. Moreover, we

do not observe any deviations from this behavior reported

in molecular dynamic simulation [13] where not Ggaussian

shape of chain was obtained. For intermediate concentrations

it can be seen that the slope at low q is indeed higher than

at large q (see inset in Figure 8a). In other words, the chains

behave as in a dilute solution on a large scale, but as being in

a dense system on a short-range scale. The scaling exponents,

2ν, calculated from the slopes of linear parts of S(q) at low

q and high q are shown in Fig. 8b. The exponents for low

q are slightly lower than the theoretical value 2ν = 1.5, do

not depend on the chain length and slightly decrease with the

increasing concentration. The values for high q are higher

than the expected value, 2ν = 1, and significantly depend on

the polymer concentration, the more, the shorter the chain is.

The correlation lengths estimated from the intersections

of the linear fits of rectilinear parts of curves are shown in

Figure 9. The correlation length is concentration dependent:

ξ ∝ φν/(1−νd), which gives ξ ∝ φ−3/2 in the case of a

two-dimensional system. This dependence is marked by a

straight line in Figure 9 and it can be seen that it holds for

the concentrated solutions (0.5 < φ < 0.8). In this range, ξ
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is practically independent ofn the chain length as should be

expected. However, as the polymer concentration decreases,

ξ of long chains levels off and it decreases with increasing

N .

Fig. 9. Correlation lengths determined from S(q) vs. q plots

Such behavior can also be also related to the phase sepa-

ration because it means that the concentration of segments

belonging to other chains in the vicinity of a given segment

decreases weakly with decreasing φ or, in other words, the

concentration of the solvent within the coil remains nearly

constant (in most of the chains), in spite of decreasing φ. This

effect is obviouslyf course most pronounced for the longest

chains.

Fig. 10. Kratky plots for φ = 1.0 and 0.05 (thick lines) and for
φ = 0.5 (two thin lines corresponding to different scaling expo-
nents). The scaling exponents and concentrations are indicated in

the figure. The case of N = 1024

An analysis of the scattering data in the length scale of

the order of Rg can be performed also using the so-called

Kratky plot. According to Eq.12, by plotting S(q)q1/ν vs.

q one should obtain a plateau over a range of q of the or-

der of the inverse size of the chain. For an ideal chain, i.e.

assuming ν = 1/2, we should obtain S(q)q2 = constant.

Fig. 10 shows Kratky plots for chains N = 1024, for selected

concentrations. For high and low values of φ, the suitable

scaling exponent gives a plateau over a broad range of q as

expected (thick lines in Figure 10). An interesting regime

is the intermediate (scaling) regime. In Figure 10 it is only

one concentration of 0.5 (thin lines) that is shown for clarity;,

however, similar behavior was observed for all chain lengths,

N > 64. One can find a scaling exponent, for which the

plateau is observed for low q (1.33 in this case) and another

one (1.11) for which a plateau is obtained for high q, corre-

sponding to distances smaller than the correlation length. The

values of the exponents are in good agreement with those

shown in Figure 8.

The confirmation of the above quantitative findings can

be found in visualization of the system studied. Figure 11

presents snapshots of the simulated systems for N = 1024 at

polymer concentrations φ = 0.4, i.e. in the area where the dis-

cussed parameters behave in a different way. One can observe

the appearance of relatively big domains of a pure solvent, –

whichat can be considered as a phase separation mentioned

above. Such domains are usually surrounded mostly by a part

of one chain, forming a domain border. It can also be seen

that some chains adopt a compact, disc-like form with other

chains completely excluded from the coil area (as suggested

by de Gennes) but other chains adopt extended configurations

or have a dumb-bell shape with two compact domains joined

by a stretched segment. Many long chains even penetrate

deeply into the “disc” of other coils, adopting sometimes

quite exotic forms.

V. SUMMARY AND CONCLUSIONS

WHerein we present the results of extensive simulations

of two-dimensional polymer systems over a broad range of

chain lengths and concentrations, including polymer melts.

The Cooperative Motion Algorithm was used in order to sam-

ple efficiently for systems at high densities. The model chains

were embedded to a triangular lattice and the system was

athermal. In contrast to most of the simulations the solvent

molecules were explicitly taken into account. The results

obtained for solutions of short chains (N < 256) were in

good agreement with previous simulations and theories. For

the longest chains (consisting of 512 and 1024 beads) some

unexpected behavior in the semidilute and dilute regimes was

found. A rapid change in the concentration dependence of

the end-to-end distance of the radius of gyration and of the

chain asphericity was observed around φ = 0.2÷ 0.6, which

is argued to be related to a temporary microphase separa-

tion [22, 23]. However, at the lowest concentrations, below

the critical concentration, φ∗, deviations from the theory were

also observed – these theories did not take into account the
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Fig. 11. A Snapshot of simulated systems for N = 1024 at polymer concentration φ = 0.4. Each chain is depicted in a different color

strong effect of solvent excluded volume interactions in two

dimensions (solvent incompressibility). The longest chains

clearly deviated from the scaling laws: Ree and Rg increased

with N faster than expected and the R2
ee/R

2
g ratio consider-

ably increased. The chains became more rod-like and their

asphericity exceeded 0.8 for N = 1024. At high concentra-

tions (φ > 0.6) the results were in agreement with previous

simulations and the theories even for the longest chains.

Single chain scattering structure factors showed changes

in the fractal dimension of chains with changing polymer

concentration. In the semidilute and concentrated regimes a

crossover in the fractal dimension between low and high scat-

tering vector was observed, in agreement with the theory and

the previous simulations for shorter chains. It was also found

that for the longest chains the concentration dependence of the

correlation length is saturated in the semi-diluted regime as

expected in the case of phase separation. The center-of-mass

correlation functions showed an increase in the interpenetra-

tion of the chains and a decrease in the correlation hole for

long chains (more important at intermediate concentrations).

Concluding we can say that long polymer chains behave

in a different way in a 2D solution if the solvent is really

confined in 2D and its excluded volume is taken into ac-

count. The presence of an incompressible solvent modifies

the probability of changing conformations of the chains in

the vicinity of other chains. This effect is weaker for high

concentrations and short chains and in these cases our results

agree with the previous findings. Two-dimensional systems

are also considered as a limiting case of confined geometry.

The model considered in this work corresponds to polymers

intercalated in layered silicates, where the solvent molecules

can hardly cross the polymer chains. It is apparently not the

case of chains adsorbed on the surface, where the solvent

molecules can move in a 3D space and only the polymer is

confined to 2D.

It is also worth noting that extrapolations of the results

obtained from simulations of short chains must be consid-

ered with care. One can miss important effects, which clearly

appear clearly only for sufficiently long chains and a broad

concentration range.
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