• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 23 (3) 2017, 239–250

Minimal Energy Dissipation Rate and Director Orientation Relative to External Dissipative Fields such as Temperature and Velocity Gradients in Nematic and Cholestric Liquid Crystals

Sarman Sten *, Wang Yong-Lei, Laaksonen Aatto

Department of Materials and Environmental Chemistry Arrhenius Laboratory, Stockholm University
106 91 Stockholm, Sweden

*E-mail: sarman@ownit.nu

Received:

Received: 22 December 2016; revised: 13 March 2017; accepted: 15 March 2017; published online: 30 September 2017

DOI:   10.12921/cmst.2016.0000066

Abstract:

The purpose of this review article is to summarize observations accumulated over the years on director alignment phenomena in nematic and cholesteric liquid crystals by molecular dynamics simulation of molecular model systems and by experiment on real systems. The main focus is on the alignment angle between the director and external dissipative fields such as velocity gradients in various flow geometries and temperature gradients doing irreversible work on the system. A general observation is that the director attains an orientation relative to the field where the energy dissipation rate is minimal in the steady state. In the case of planar elongational flow, it can be proven by using symmetry arguments that the energy dissipation rate must be either maximal or minimal and simulations have shown that is minimal. In planar Couette flow both simulations and experiments imply that the energy dissipation rate is minimal in the steady state. Finally, in the case of heat conduction, symmetry arguments imply that the energy dissipation rate must be either minimal or maximal and simulations and experiments indicate that it is minimal. All these observations can be explained by applying a recently proven theorem according to which the energy dissipation rate is minimal in the steady state in the linear regime at low fields.

Key words:

alignment phenomena, elongational flow, heat conduction, liquid crystals, minimal energy dissipation rate, nonequilibrium molecular dynamics simulation, shear flow

References:

[1] S. Chandrasekhar, Liquid Crystals, Cambridge University Press, Cambridge, 1992.
[2] P.G. de Gennesand J.Prost, The Physicsof Liquid Crystals, Clarendon Press, Oxford, 1993.
[3] S.R.de Grootand P.Mazur, Nonequilibrium Thermodynamics, Dover, New York,1984.
[4] S. Sarman, J. Chem. Phys. 103, 393 (1995).
[5] S. Sarman, J. Chem. Phys. 103, 10378 (1995).
[6] J. Jadzyn and G. Czechowski, J. Phys.: Condens. Matter, 13, L261 (2001).
[7] S. Sarman and A. Laaksonen, Phys. Chem. Chem. Phys. 17, 3332 (2015).
[8] D.J. Evans, D.J. Searles and S.R. Williams, Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems, Wiley-VCH (2016).
[9] G.W. Stewart, J. Chem. Phys., 4, 231 (1936).
[10] D.O. Holland and G.W. Stewart, Phys. Rev., 51, 62 (1937).
[11] G.W. Stewart, D.O. Holland and L.M. Reynolds, Phys. Rev., 58, 174 (1940).
[12] G.W. Stewart, Phys. Rev., 69, 51 (1946).
[13] J.J.C. Picot and A.G. Fredrickson, Ind. Eng. Chem. Fundam., 1, 84      (1968).
[14] J. Fisher and A.G. Fredrickson, Mol. Cryst. Liq. Cryst., 6, 255 (1969).
[15] M.N. Patharkar, V.S.V. Rajan and J.J.C. Picot, Mol. Cryst. Liq. Cryst., 15, 225 (1971).
[16] P.K. Currie, Rheol. Acta, 12, 165 (1973).
[17] S. Sarman and A. Laaksonen, Phys. Chem. Chem. Phys., 16, 14741 (2014).
[18] J.G. Gay and B.J. Berne, J. Chem. Phys., 74, 3316 (1981).
[19] M.A. Bates and G.R. Luckhurst, J. Chem. Phys., 104, 6696 (1996).
[20] N. Éber and I. Jánossy, Mol. Cryst. Liq. Cryst., Lett. Sect., 72, 233 (1982)
[21] P. Oswald and A. Dequidt, Phys. Rev. Lett., 100, 217802 (2008).
[22] P. Oswald, Eur. Phys. J. E: Soft Matter Biol. Phys., 35, 10 (2012).
[23] F.M. Leslie, Quart. Journ. Mech. Appl. Math. 19, 357 (1966).
[24] S. Sarman and A. Laaksonen, J. Chem. Phys., 131, 144904 (2009).
[25] D.J. Evansand G.P. Morriss, Statistical Mechanicsof Nonequilibrium Liquids, Academic Press, London, 1990.
[26] A.M. Kraynik and D.A. Reinelt, Int. J. Multiphase Flow, 18, 1045 (1992).
[27] A. Baranyai and P.T. Cummings, J. Chem. Phys., 103, 10217 (1995).
[28] B.D. Todd and P.J. Daivis, Phys. Rev. Lett., 81, 1118 (1998).
[29] B.D.Toddand P.J.Daivis, Molecular Simulation,33,189(2007).
[30] S. Sarman, J. Chem. Phys., 101, 480 (1994).
[31] F.M. Leslie, Proc. R. Soc. A, A307, 359 (1968).
[32] F.M. Leslie, Symp. Faraday Soc., 5, 33 (1971).
[33] W.G. Hoover, A.J.C. Ladd and B. Moran, Phys. Rev. Lett., 48, 1818 (1982).
[34] D.J. Evans, W.G. Hoover, B.H. Failor, B. Moran and A.J.C. Ladd, Phys. Rev. A, 28, 1016 (1983).
[35] W.G.Hoover, Computational Statistical Mechanics, Elsevier (1991).
[36] D.J. Evans and S. Sarman, Phys. Rev. E, 48, 65 (1992).
[37] S. Hess, J. Non-Equilib. Thermodyn. 11, 175 (1986).
[38] T.Ikeshojiand B.Hafskjold, Molecular Physics 81, 251(1994).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_27_2_2021_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST