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Abstract: The purpose of this review article is to summarize observations accumulated over the years on director alignment
phenomena in nematic and cholesteric liquid crystals by molecular dynamics simulation of molecular model systems and by
experiment on real systems. The main focus is on the alignment angle between the director and external dissipative fields
such as velocity gradients in various flow geometries and temperature gradients doing irreversible work on the system. A
general observation is that the director attains an orientation relative to the field where the energy dissipation rate is minimal
in the steady state. In the case of planar elongational flow, it can be proven by using symmetry arguments that the energy
dissipation rate must be either maximal or minimal and simulations have shown that is minimal. In planar Couette flow both
simulations and experiments imply that the energy dissipation rate is minimal in the steady state. Finally, in the case of heat
conduction, symmetry arguments imply that the energy dissipation rate must be either minimal or maximal and simulations
and experiments indicate that it is minimal. All these observations can be explained by applying a recently proven theorem
according to which the energy dissipation rate is minimal in the steady state in the linear regime at low fields.
Key words: Liquid crystals, nonequilibrium molecular dynamics simulation, shear flow, elongational flow, heat conduction,
alignment phenomena, minimal energy dissipation rate

I. INTRODUCTION

Liquid crystals consist of rod-like or disk-like molecules
with varying orientational and translational order and they can
be regarded as a state between the solid and liquid states. The
simplest kind of liquid crystal is the nematic liquid crystal [1,
2], where there is an average orientation of the molecules in
a certain direction – the director – but no translational order.
A nematic liquid crystal cannot support shear stresses, so it is
by definition a liquid, but it can support torques, which is the
basis for various orientation phenomena relative to external
fields. Another kind of liquid crystal is the cholesteric liquid
crystal. It can be regarded as a nematic liquid crystal where
the director rotates in space around an axis perpendicular to
itself – the cholesteric axis or the optical axis. The spatial ro-

tation period or the pitch is of the order of 1 µm or about 500
molecular diameters. A cholesteric liquid crystal is different
from its mirror image and it is formed by chiral molecules.
It is well-known that the director of liquid crystals can be
oriented by the application of an electric or magnetic field,
which is utilized in their technological applications. These
fields do not do any irreversible work on the system. Once the
director has attained the preferred orientation relative to the
field, the system will be in thermodynamic equilibrium. On
the other hand, dissipative fields such as velocity gradients or
temperature gradients do irreversible work on the system [3],
so that a thermodynamic equilibrium state cannot be reached.
However, it is still possible to reach a steady state, where the
director is oriented at a constant angle relative to the field.
There is some theoretical and experimental evidence that the
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director comes to rest in an orientation where the energy
dissipation rate is minimal. This quantity is defined as the ir-
reversible work per unit time and unit volume that is done by
dissipative external field on the system and that is converted
to heat. More specifically, such orientation phenomena have
been observed in simulations of shear flow or planar Couette
flow [4, 5] and in experimental measurements of the viscosity
[6] in this flow geometry and in simulations of planar elon-
gational flow [7]. In the latter case, it is possible to actually
prove that the energy dissipation rate must be either minimal
or maximal in a steady state in the linear or Newtonian regime
by using the linear phenomenological relations between the
velocity gradient and the shear stress. These results can be ex-
plained in a more general way by invoking a recently proven
theorem stating that the energy dissipation rate is minimal
in a steady state in the linear regime [8]. In the case of a
nematic liquid crystal subject to a temperature gradient, there
are quite a few early experimental works [9–16] that probably
imply that the director of a calamitic nematic liquid crystal,
i.e. a liquid crystal consisting of rod-like molecules, orients
perpendicularly to this gradient. This means the heat flow
is minimized, since the heat conductivity is minimal in this
orientation. Unfortunately, the results of these works are not
wholly conclusive because the underlying experiments are
very hard to carry out. On the other hand, molecular dynamics
simulation of nematic phases of calamitic and discotic soft
ellipsoids [17–19] clearly show that they orient perpendicu-
larly and parallel, respectively, to the temperature gradient,
so that the heat flow and thereby the energy dissipation rate
are minimized. However, one system, where the director def-
initely orients perpendicularly to the temperature gradient,
is the cholesteric liquid crystal, where the cholesteric axis
orients parallel to the temperature gradient, so that the direc-
tor becomes perpendicular to this gradient and the heat flow
is minimized [1, 2, 20–22]. This is also in agreement with
the above-mentioned dissipation theorem even though the
torque orienting the director is proportional to the square of
the temperature gradient, whereas it is directly proportional
to the velocity gradient in shear flow and elongational flow.
However, the temperature gradient is rather weak, so that the
relation between this gradient and the heat flow still is linear.

The review is outlined in the following way: in sections
II, III and IV molecular dynamics simulation results and ex-
perimental measurements on the director orientation and the
energy dissipation rate are presented and discussed for shear
flow or planar Couette flow, planar elongational flow and heat
conduction, respectively. In section V the influence of the ther-
mostat is discussed and in section VI there is a conclusion.
The background theory is given in the Appendices.

II. PLANAR COUETTE FLOW

In a laminar planar Couette flow or a shear flow, there is
a streaming velocity u in the x-direction, varying linearly in

the z-direction, u = γzex, where γ = ∂ux/∂z is the velocity
gradient or strain rate, see fig. 1.
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Fig. 1. Planar Couette flow or shear flow arises when there is a
streaming velocity in the x-direction, varying linearly in the z-
direction, u = γzex, where γ = ∂ux/∂z is the shear rate or
velocity gradient. The expression for the relation between the ve-
locity gradient and the pressure tensor becomes simpler by using
a director based coordinate system (e1, e2, e3), where the direc-
tor n points in the e3-direction, obtained by rotating the ordinary
laboratory based coordinate system (ex, ey, ez) with an angle θ
around the ey = e2-axis. Reproduced from reference 3, J. Chem.

Phys. 103, 10378 (1995) with the permission of AIP Publishing

Then it is well-known that the alignment angle, θ, between
the director of a nematic liquid crystal and the streamlines is
determined by a mechanical stability criterion, namely that
the antisymmetric pressure must be zero when no external
torques act on the system, i.e. that the torques exerted by the
vorticity and the strain rate cancel out. This makes it possible
to derive a relationship between the alignment angle and the
viscosity coefficients in the Newtonian regime by using the
linear relation between the pressure tensor and the strain rate,
see references [1, 2, 22] and Appendices I and II,

〈pa2〉 = −γ̃1
γ

4
− γ̃2

γ

4
cos 2θ = 0, (1) (1)

where γ̃1 is the twist viscosity, γ̃2 is the cross coupling co-
efficient between the antisymmetric pressure and the strain
rate and 〈pa2〉 is the antisymmetric pressure in the vorticity
direction perpendicular to the streamlines and perpendicular
to the velocity gradient. The angular brackets denote that the
pressure tensor is the ensemble average of a phase function.
Then, if 〈pa2〉 is equal to zero, we obtain

cos 2θ0 = −γ̃1/γ̃2(2) (2)

for the preferred alignment angle, θ0, provided that the
ratio |γ̃1/γ̃2| is less than one. Then the liquid crystal is said
to be flow stable. This condition is fulfilled in many liquid
crystals and θ0 is between 10 and 20 degrees both in real sys-
tems and in simplified coarse grained model systems such as
the soft ellipsoid fluid, see references [4–6] and Appendix III.
Note, however, that for some systems, often near the nematic-
smectic A phase transition, the ratio |γ̃1/γ̃2|is greater than
one. This means that there is no orientation angle where the
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antisymmetric pressure is zero, so that no steady state is at-
tained. Then the liquid crystal is said to be flow unstable and
the director will rotate forever [1, 2, 23, 24]. The problem
can be analysed in further detail by considering the algebraic
expression for the energy dissipation rate, ẇirr, of a flow sta-
ble nematic liquid crystal, given by the dyadic product of the
symmetric traceless pressure, P̄ , and the traceless strain rate,
∇u,

ẇirr = P̄ :∇u =

(
η +

η̃1
6

+
η̃3
2

sin2 2θ +
η̃2
2

cos 2θ

)
γ2,

(3)
where the definitions of the viscosity coefficients η, η̃1, η̃2
and η̃3 and the derivation are given in Appendix II. If the
values of the various viscosity coefficients are inserted, it is
found that the functional dependence of ẇirr on θ is similar
to that given in Fig. 2.

Fig. 2. The energy dissipation rate, ẇirr, equation (3), due to the
strain rate of a nematic liquid crystal phase of calamitic soft ellip-
soids as a function of the director alignment angle, θ, obtained by
using the Lagrangian constraint algorithm (A14) to fix the director
at various angles relative to the streamlines. The preferred alignment
angle attained when no constraints are applied is equal to about 20o

which is close to the minimum of ẇirr. Reproduced from reference
[3], J. Chem. Phys. 103, 10378 (1995) with the permission of AIP

Publishing

This function has been obtained by shear flow simulations
using the SLLOD equations of motion [25] for a nematic
phase of calamitic soft ellipsoids, see references [4] and [5]
and Appendix IVa. The energy dissipation rate is low close to
the preferred alignment angle and high when the director is
perpendicular to the streamlines and parallel to the velocity
gradient. Then, if we study the distribution of the director,
we find that it is centered close to the minimum of ẇirr. This
has also been observed in simulations of shearing nematic
phases of discotic soft ellipsoids [5] and when experimentally
measured viscosity coefficients are inserted in the equations
(2) and (3) and the resulting alignment angle is determined
[6]. Thus the system seems to select the alignment angle
that minimizes the energy dissipation rate. It could still be
argued that the above results are fortuitous. However, there is
a recently proven theorem stating that the energy dissipation

rate is minimal in a steady state in the linear regime at low
fields [8]. As a consequence, the energy dissipation rate (3)
must be minimal at the preferred alignment angle, θ0 , given
by equation (2). Thus the derivative of the function (3) with
respect to θ must be zero for θ0, giving an additional relation
between the viscosity coefficients and the alignment angle,

cos 2θ0− =
η̃2
2η̃3

(4a)

or

2η̃3γ̃1 + η̃2γ̃2 = 0, (4b)

where θ0 has been eliminated by using equation (2). The ex-
pressions (4a) and (2) do not coincide but they must still give
the same value of θ0. This provides an important cross-check
for the correctness of the simulation algorithms and experi-
mental methods used to determine the viscosity coefficients
and for the computer programs used to run the simulations.

III. PLANAR ELONGATIONAL FLOW

In a planar irrotational elongational flow arising when an
incompressible liquid expands in the x-direction and con-
tracts in the negative z-direction, see Fig. 3, the velocity
field and the strain rate are given by u = γ(xex − zez) and
∇u = ∇u = γ(exex − ezez), respectively. Such a system
can be simulated in a continuous manner by using the SLLOD
equations of motion [24] together with the Kraynik-Reinelt
boundary conditions, see references [25–28], Appendix IVb
and fig. 8.

Contraction

Elongation

Fig. 3. Schematic representation of a nematic phase of a soft ellip-
soid fluid undergoing irrotational extensional flow. The system is
elongated in the horizontal direction and contracted in the vertical
direction while the volume is constant. The molecules tend to be

aligned in the elongation direction

The director alignment angle is in the first place determined
by the mechanical stability in same way as in shear flow,
which means that the antisymmetric pressure must be zero. In
the linear or Newtonian regime, the alignment angle can be
found by using the following relation between the antisym-
metric pressure and the strain rate, see Appendix II,

〈pa2〉 = −γ̃2
γ

2
sin 2θ, (5)
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where θ denotes the angle between the director and the elonga-
tion direction and γ̃2 is the cross coupling coefficient between
the antisymmetric pressure and the strain rate. From this ex-
pression it is apparent that the alignment angle must be either
zero or 90 degrees, i.e. where the torque exerted by the strain
rate is equal to zero. For a flow stable calamitic nematic liq-
uid crystal the cross coupling coefficient γ̃2 is negative [5],
so that the zero degree orientation parallel to the elongation
direction is mechanically stable and the 90 degree orientation
is unstable. Just as in planar Couette flow or shear flow, a fur-
ther analysis can be undertaken by considering the algebraic
expression for the energy dissipation rate in the linear regime,

ẇirr = P̄ :∇u =

(
4η +

2η̃1
3

+ 2η̃3 cos2 2θ

)
γ2. (6)

If the viscosity coefficient η̃3 is positive this expression
is minimal when θ is equal to 45 degrees but this orientation
is excluded because of the mechanical stability (5). If η̃3 on
the other hand is negative, this expression attains the same
minimal value when θ is equal to 0 or 90 degrees, i.e. the
elongation or contraction direction. Simulations of a nematic
phase of calamitic soft ellipsoids have shown that η̃3 is less
than zero [7], so that the energy dissipation rate is minimal in
the stable orientation also in this case of planar elongational
flow. This is in agreement with the dissipation theorem of
reference [8]. See also fig. 4 where the angular distribution of
the director around the elongation direction is displayed.

Fig. 4. The angular distribution, p(θ), of the director of a calamitic
nematic liquid crystal consisting of soft ellipsoids around the elon-
gation direction where the angle between the director and the elon-
gation direction is denoted by θ. Reproduced from reference [7],
Phys. Chem. Chem. Phys. 17, 3332 (2015) with permission from

the PCCP Owner Societies

IV. HEAT CONDUCTION

The heat flow in an axially symmetric system such as a
nematic liquid crystal or a cholesteric liquid crystal is given

by

〈JQ〉 = −[λ || ||nn+ λ⊥⊥(1− nn)] · ∇T
T

, (7)

where 〈JQ〉 is the heat current density, λ || || is the heat con-
ductivity parallel to the director of an ordinary achiral nematic
liquid crystal or parallel to the cholesteric axis of a cholesteric
liquid crystal and λ⊥⊥ is the heat conductivity perpendicular
to the director of a nematic liquid crystal or perpendicular
to the cholesteric axis of a cholesteric liquid crystal, T is the
absolute temperature and n is the director. Then the energy
dissipation rate of the system due to the heat flow becomes

ẇirr =〈JQ〉 ·
∇T
T

=
1

T 2
[λ⊥⊥∇T ·∇T

+(λ || || − λ⊥⊥)(n ·∇T )2].
(8)

From this expression it follows that ẇirrdepends on the an-
gle between the temperature gradient and the director n or
between the temperature gradient and the cholesteric axis
(since the scalar product of the director and the temperature
gradient, n ·∇T , is included). When λ || || > λ⊥⊥, as in a
nematic liquid crystal consisting of calamitic molecules, the
heat current density and thereby ẇirrare maximal when the
temperature gradient and the director are parallel and mini-
mal when they are perpendicular to each other. Conversely,
when λ || || < λ⊥⊥, as in a nematic liquid crystal consisting
of discotic molecules, the heat current density and the energy
dissipation rate are maximal when the director is perpendicu-
lar to the temperature gradient and minimal when it is parallel
to the temperature gradient.

nθ

COLD

HOT

T

Fig. 5. A temperature gradient is maintained by thermoststatting one
region (dark grey) of the system at a high temperature and another
region (light grey) at a low temperature whereby heat will flow from
the high temperature region to the low temperature region. Repro-
duced from reference [16], Phys. Chem. Chem. Phys., 16, 14741

(2014) with permission from the PCCP Owner Societies

The temperature gradient exerts a torque on the molecules
around an axis perpendicular to itself and perpendicular to the
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director, see fig. 6. Then it is immediately possible to realise
that this torque must be zero in the parallel and perpendicular
orientations due to symmetry but it is impossible to determine
whether these orientations are stable or unstable.

x

y,Γy

zT
n

θ

Fig. 6. A schematic view of a nematic liquid crystal subject a tem-
perature gradient is shown. The temperature gradient ∇T points in
the z-direction and the director n lies in the zx-plane at an angle θ
to the z-axis. Then a torque Γ arises in the direction of the y-axis.
Reproduced from reference [16], Phys. Chem. Chem. Phys., 16,

14741 (2014) with permission from the PCCP Owner Societies

Unfortunately, there is no linear relation between the torque
and the temperature gradient since they are pseudovectors
and polar vectors, respectively, due to the axial symmetry of
the system. However, a quantitative relation between them
can be obtained by noting that a cross coupling between a
pseudo vector and a symmetric second rank tensor is allowed.
The latter quantity can be obtained by forming the dyadic
product of the temperature gradient, giving the following
relation [17],

Γ =µ ε : nn · ∇T
T

∇T
T

= µn · ∇T
T
n× ∇T

T
=

=µ

∣∣∣∣∂zTT
∣∣∣∣2 cos θ sin θ ey =

1

2
µ

∣∣∣∣∂zTT
∣∣∣∣2 sin 2θ ey,

(9)

where Γ is the torque density, µ is a cross coupling coeffi-
cient and ε is the Levi-Civita tensor. The third equality is
obtained by assuming that the temperature gradient points in
the z-direction and the director lies in the zx-plane, see fig 6,
whereby θ becomes the angle between these two vectors. This
relation fulfils the symmetry condition according to which
the torque must be zero when the director is parallel or per-
pendicular to the temperature gradient. Moreover, the torque
is proportional to the square of the temperature gradient for
given angle θ. Note also that this relation is analogous to
that between the strain rate and the antisymmetric pressure
in planar elongational flow (5). Unfortunately, it is not pos-
sible to derive a Green-Kubo relation for the cross coupling
coefficient µ because of the nonlinear relationship.

The director orientation can be determined by simulating
systems, where a temperature gradient and a heat flow are
maintained by thermostatting different parts of the system at
different temperatures, see fig. 5 and reference [17], using the
simulation algorithm given in Appendix IVc. Such simula-
tions have shown that the director of nematic liquid crystals

consisting of soft calamitic ellipsoids tends to align perpen-
dicularly to the temperature gradient, see fig. 7, whereas the
director of nematic liquid crystals consisting of discotic ellip-
soids tends to align parallel to the temperature gradient. Thus
the energy dissipation rate is minimal in both cases. More-
over, if the director is constrained to attain a fixed orientation
between the perpendicular and parallel orientation relative to
temperature gradient by applying a Lagrangian constraint al-
gorithm, the torque exerted can be obtained. Then it is found
this torque twists the director of a calamitic system towards
the perpendicular orientation and the director of a discotic
system towards the parallel orientation. The same orientation
behaviour of the directors of calamitic and discotic nematic
liquid crystals relative to the temperature gradient was ob-
served in an earlier work [30]. However, then the Evans heat
flow algorithm [25] was applied where a fictious external field
under non-Newtonian equations of motion rather than a real
temperature gradient drives the heat flow. Therefore, it was
not possible to determine whether the orientation phenomena
were a real effect or a consequence of the non-Newtonian
synthetic equations of motion.

Fig. 7. The angular distribution,p(θ), of the director of a nematic
liquids crystal consisting of soft calamitic ellipsoids around the
temperature gradient where the angle between the director and the
temperature gradient is denoted by θ. Reproduced from reference
[16], Phys. Chem. Chem. Phys., 16, 14741 (2014) with permission

from the PCCP Owner Societies

There are also some early experimental works on the ori-
entation of the director of nematic liquid crystals relative to
temperature gradients [9–16] that probably support the con-
clusions of these heat flow simulations. Unfortunately, it is
very difficult to carry out these experiments because if the
temperature gradient is too large, there will be convection
in the system and if the temperature gradient is too small, it
will not be strong enough to overcome the elastic torques or
surface torques. Therefore, these experiments are not fully
conclusive.

Finally, one example where the director orientation rela-
tive to a temperature gradient definitely is the one that min-
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imises the energy dissipation rate is a cholesteric liquid crys-
tal. In this system the director rotates in space around the
cholesteric axis forming a spiral structure. Then experimental
studies, where a temperature gradient is applied, have shown
that the cholesteric axis orients parallel to the temperature
gradient, whereby the energy dissipation rate is minimised
since the heat conductivity is greater in the direction perpen-
dicular to the cholesteric axis than in the parallel direction.
Moreover, the whole spiral structure starts rotating in time.
This phenomenon is known as thermomechanical coupling [1,
2, 20–22, 31, 32]. There are quite a few experimental studies
available on this phenomenon, where it has been found in
a conclusive way that the cholesteric axis remains parallel
to the temperature gradient, so this orientation seems to be
stable and thus the energy dissipation rate is minimal. We
can consequently conclude that the orientation of the director
relative to the temperature gradient is consistent with the dis-
sipation theorem of reference [8] even though the coupling
between the torque and the temperature gradient is quadratic
rather than linear and the system is inhomogeneous. However,
the temperature gradient is rather weak, so we still remain in
the linear regime.

V. EFFECTS OF THE THERMOSTAT

In the above simulations of shear flow and elongational
flow the velocity gradient does work on the system that is
converted to heat, which must be removed in order to keep the
temperature constant and to maintain a steady state. In a real
macroscopic system this takes place by heat conduction to
the system boundaries and this could in principle be arranged
in a microscopic simulation cell as well. Unfortunately, this
is inconvenient because a temperature gradient of molecular
dimensions would make the system inhomogeneous and thus
make it difficult to define the thermodynamic state. Therefore,
the temperature is kept constant by forcing the kinetic energy
to be a constant of motion by applying a Gaussian thermostat,
see equation (A11). This thermostat was originally devised
independently by Hoover et al. [33–35] and by Evans [25].
The equilibrium ensemble averages of the phase functions
and time correlation functions generated when this thermostat
is used are essentially canonical [36]. Away from equilibrium,
it can be shown that the effect of the Gaussian thermostat on
the ensemble averages is proportional to the square of the ex-
ternal field whereas the thermodynamic fluxes driven by the
field are directly proportional to the field in a linear transport
process. Thus the corresponding linear transport coefficients
that are equal to the ratio of the flux and the field in the limit
of zero field are independent of the thermostat. Therefore,
transport coefficients obtained from the simulations of shear
flow and elongational flow are independent of the thermostat
since there is a linear relation between the velocity gradient
and the shear stress in the Newtonian regime and since we
are interested in the limit of zero velocity gradient.

The situation is different in the heat flow simulations be-
cause here we actually want a temperature gradient. This
gradient is obtained by applying two bar thermostats at differ-
ent temperatures acting over a limited range and separated by
a distance that is long compared to this range, see fig. 5 and
equation (A.13). Therefore, the movements of only a small
fraction of the molecules are affected by the thermostats,
whereas the movements of the majority of the molecules
away from the bar thermostats are governed by the ordinary
Newtonian equations of motion. Thus it is reasonable to as-
sume that the influence of the details of the thermostat on the
ensemble averages of the phase functions is limited in this
case, too.

VI. CONCLUSION

We have reviewed molecular dynamics simulations and
experimental work on director orientation phenomena in ne-
matic liquid crystals and in cholesteric liquid crystals under
external dissipative fields such as velocity gradients and tem-
perature gradients. In all the examples the liquid crystals
seems to attain precisely that alignment angle relative to the
external dissipative field that minimises the energy dissipation
rate.

In a nematic liquid crystal the director orientation is in
the first place determined by a mechanical stability criterion,
namely that the external torques acting on the system must be
zero at mechanical equilibrium. This makes it possible to de-
rive an exact relation between the alignment angle relative to
the streamlines and the viscosity coefficients in the linear or
Newtonian regime of planar elongational flow and of planar
Couette flow. It can be shown that the elongation direction is
the stable orientation of flow stable calamitic nematic liquid
crystals undergoing elongational flow in the linear regime. It
can also be shown that the value of the energy dissipation rate
is the same in the contraction direction and in the elongation
direction and that this value is either the maximal or the min-
imal value by using the linear phenomenological relations
between the strain rate and the pressure. Simulations of the
calamitic soft ellipsoid fluid have shown that the energy dissi-
pation rate is minimal in the elongation direction. In planar
Couette flow both simulations and experiments imply that
the energy dissipation rate is minimal at the mechanically
stable orientation. In contrast to elongational flow, this does
not follow from the linear relation between pressure and the
strain rate.

It is possible to think that these observations are special
cases. However, they follow from a recently proven theo-
rem stating that the energy dissipation rate is minimal in a
steady state in the linear regime. Thus the energy dissipation
rate must be minimal at the alignment angle given by the
mechanical stability criterion. This is in fact an important
consistency condition for the experimental methods and the
simulations algorithms used to evaluate the various viscosity
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coefficients and for the programme codes used to carry out
the simulations.

In calamitic nematic liquid crystals, the heat conductivity
is larger in the direction parallel to the director than in the
perpendicular direction and the reverse is true for discotic
nematic liquid crystals. Thus the energy dissipation rate due
to the heat flow depends on the angle between the director and
the temperature gradient. When a nematic liquid crystal is
subjected to a temperature gradient a torque is exerted on the
molecules. Due to symmetry, this torque must be proportional
to the square of the temperature gradient and it must be zero
when the director is parallel or perpendicular to this gradient.

In simulations of nematic phases of soft ellipsoids un-
der a temperature gradient it turns out that the director of
a calamitic nematic liquid crystal aligns perpendicularly to
the temperature gradient whereas the director of a discotic
nematic liquid crystal orients parallel to this gradient. In both
cases the energy dissipation rate is minimal. These simulation
results are probably supported by some experimental mea-
surements but they are difficult to carry out in practice so they
are not fully conclusive.

Finally, one system where there definitely is conclusive
experimental evidence for the fact that the director attains the
orientation that minimises the energy dissipation rate due to
a temperature gradient is the cholesteric liquid crystal. The
cholesteric axis of droplets of cholesteric liquid crystals ori-
ent parallel to a temperature gradient and the director rotates.
This is a well-established phenomenon observed in studies of
thermomechanical coupling and since the heat conductivity
is lower in the direction of the cholesteric axis than in the
perpendicular direction the energy dissipation rate is minimal
in this case.

Thus the director orientation relative to a temperature gra-
dient also follows the dissipation theorem even though there
is a quadratic coupling between the torque and the tempera-
ture gradient. However, the temperature gradients are rather
low so we are still in the linear regime.
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APPENDIX I. ORDER PARAMETER, DIRECTOR
AND DIRECTOR ANGULAR VELOCITY

In order to describe transport properties of a liquid crystal
we must first define the order parameter, the director and the

director angular velocity. In an axially symmetric system such
as a nematic or a smectic A liquid crystal the order parameter,
S, is given by the largest eigenvalue of the order tensor,

Q =
3

2

(
1

N

N∑
i=1

ûiûi −
1

3
1

)
, (A.1)

where N is the number of particles, {ûi; 1 ≤ i ≤ N} is
some characteristic vector of the molecule, in the case of
bodies of revolution it can be taken to be parallel to the axis
of revolution, but in a more realistic all atom model some
other vector in the molecule has to be defined as ûi, and 1 is
the unit second rank tensor. When the molecules are perfectly
aligned in the same direction, the order parameter is equal
to unity, and when the orientation is completely random, it
is equal to zero. The eigenvector corresponding to the order
parameter is defined as the director, n, and it is a measure of
the average orientation of the molecules in the system. The
order tensor can also be expressed as

Q =
3

2
S

(
nn− 1

3
1

)
. (A.2)

The director angular velocity is given by Ω = n × ṅ. In
a macroscopic system the order tensor and the order parame-
ter are functions of the position in space but in a small system
such as a simulation cell with dimensions of the order of
some ten molecular lengths there is only one director and one
order parameter for the whole system.

APPENDIX II. RELATION BETWEEN THE
PRESSURE TENSOR, VELOCITY GRADIENT AND

VISCOSITY COEFFICIENTS

The relation between the velocity gradient,∇u, and the
pressure tensor, P , is more complicated in an axially symmet-
ric system such as nematic liquid crystal than in an isotropic
fluid due to the lower symmetry. In order to derive the linear
phenomenological relations between the velocity gradient
and the pressure it is appropriate to begin by identifying the
thermodynamic forces and fluxes in the expression for the
irreversible entropy production [3, 4, 23, 37]:

σ =− 1

T

{
P :∇u+ 2P a·(1

2
∇× u−Ω)

+

(
1

3
Tr(P )− peq

)
∇·u

}
,

(A.3)

where T is the absolute temperature, and u is the stream-
ing velocity. The various parts of the second rank tensor are
denoted in the following manner: the symmetric traceless
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part is given by A = 1
2 (A +AT ) − (1/3)Tr(A)1 and the

pseudovector dual of the antisymmetric part is denoted by
Aa = − 1

2ε : A = − 1
2εαβγAγβ , where ε is the Levi-Civita

tensor. Three pairs of thermodynamic forces and fluxes can be
identified by inspection of the irreversible entropy production,
namely the symmetric traceless pressure tensor and the trace-
less strain rate, P and∇u, the antisymmetric pressure and
the difference between the vorticity and the director angular
velocity, P a and 1

2∇ × u − Ω, and the difference between
the trace of the pressure tensor and the equilibrium pressure
of a quiescent liquid crystal, and the trace of the strain rate,
(1/3)Tr(P )− peq and∇·u. Note that that the strain rate is
defined as 1

2 [∇u + (∇u)T ] and it is always symmetric. In
a uniaxially symmetric nematic liquid crystal the relations
between the pressure and the velocity gradient can be de-
duced by symmetry arguments and they can be expressed in
a few different equivalent ways [23, 37]. It has been found
that a notation due to Hess [37] is the most convenient one
for deducing Green-Kubo relations and NEMD-algorithms:

〈P 〉 =− 2η∇u− η̃1 nn · ∇u− 2η̃3nn nn : ∇u

+2η̃2nn · ε · (
1

2
∇× u−Ω)− ζnn∇ · u,

(A.4a)

〈P a〉 = − γ̃1
2

(
1

2
∇×u−Ω) − γ̃2

2
ε :
(
nn · ∇u

)
(A.4b)

and

1

3
〈Tr(P )〉 − peq = −ηV∇ · u− κnn : ∇u, (A.4c)

where the products involving the Levi-Civita tensor ε are
defined in the following way: ε : A = εαβγAγβ and
A · ε · B = AαβεβγδBδ. The quantitiesη, η̃1 and η̃3 are
shear viscosities, γ̃1 is the twist viscosity, ηV is the volume
viscosity, η̃2 is the cross coupling coefficient between the
difference between the vorticity and the director angular ve-
locity, and the symmetric traceless pressure. According to the
Onsager reciprocity relations (ORR) this coefficient is equal
to γ̃2/2, the cross coupling coefficient between the traceless
strain rate and the antisymmetric pressure. The trace of the
strain rate and the symmetric traceless pressure are related
by the cross-coupling coefficient ζ, which, according to the
ORR, is equal to the cross-coupling coefficient κ between the
traceless strain rate and the difference between the trace of
the pressure tensor and the equilibrium pressure.

Application of a planar Couette velocity gradient,∇u =
γ ezex, where γ = ∂zux is the shear rate, and fixation of the
director in the zx-plane at an angle θ relative to the stream
lines, see fig. 1, by application of an electric or a magnetic
field gives the following relations between the pressure tensor

components and the strain rate in a director based coordi-
nate system (e1, e2, e3) where the director points in the
e3-direction:

〈p̄11〉 =

(
η +

η̃3
3

)
γ sin 2θ, (A.5a)

〈p̄22〉 =
1

3
(η̃1 + η̃3) γ sin 2θ, (A.5b)

〈p̄33〉 = −
(
η +

η̃1
3

+
2η̃3
3

)
γ sin 2θ, (A.5c)

〈p̄31〉 =

(
η +

η̃1
6

)
γ cos 2θ + η̃2

γ

2
(A.5d)

and

2〈pa2〉 = 〈λ̂2〉 = −γ̃1
γ

2
− γ̃2

γ

2
cos 2θ, (A.5e)

where λ̂2 is the external torque density acting on the system.
From these equations it is apparent that the various elements
of the pressure tensor are linear functions of sin 2θ andcos 2θ,
so the various viscosity coefficients can be evaluated by fixing
the director at a few different angles relative to the stream
lines and calculating the averages of the pressure tensor ele-
ments.

In a planar elongational flow [7, 27–29], where the elon-
gation direction is parallel to the x-axis and the contraction
direction is parallel to the negative z-axis, the velocity field
is equal to u = γ(xex − zez), so that the velocity gradient
becomes∇u = γ( exex − ezez) where γ = ∂xux − ∂zuz .
Then the linear relations between the velocity gradient and
the pressure become the following in a director based coor-
dinate system (e1, e2, e3) where the director points in the
e1-direction and θ is the angle between the director and the
elongation direction or x-axis, e2 = ey and e3 = e1 × e2,

〈p̄11〉 = −2

(
η +

η̃3
3

)
γ cos 2θ, (A.6a)

〈p̄22〉 = −2

3
(η̃1 + η̃3) γ cos 2θ, (A.6b) (10)

〈p̄33〉 = 2

(
η +

η̃1
3

+
2η̃3
3

)
γ cos 2θ, (A.6c)

〈p̄31〉 =

(
2η +

η̃1
3

)
γ sin 2θ (A.6d)
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and

2〈pa2〉 = 〈λ̂2〉 = −γ̃2γ sin 2θ. (A.6e)

If these expressions for the pressure tensor are inserted in
the expression for energy dissipation rate (A3) we obtain

ẇirr =P :∇u = −
〈

1

2
(p̄s33 − p̄s11) sin 2θ − p̄s31 cos 2θ

〉
γ

γ

=

(
η +

η̃1
6

+
η̃3
2

sin2 2θ +
η̃2
2

cos 2θ

)
γ2

(A.7)
for planar Couette flow and

ẇirr =

(
4η +

2η̃1
3

+ 2η̃3 sin2 2θ

)
γ2 (A.8)

for planar elongational flow. The subscript γ denotes that the
average is evaluated in a nonequilibrium ensemble at a finite
shear rate.

APPENDIX III. THE GAY-BERNE POTENTIAL

In order to evaluate the above expressions for the irre-
versible work in shear flow, elongational flow and heat flow,
we have simulated a coarse grained model system composed
of molecules interacting via a purely repulsive version of the
commonly used Gay-Berne potential [18, 19, 30].

U(r12, û1, û2) =

= 4ε(r̂12, û1, û2)

(
σ0

r12 − σ(r̂12, û1, û2) + σ0

)18

,

(A.9)
where r12 = r2 − r1 is the distance vector from the centre
of mass of molecule 1 to the centre of mass of molecule 2,
r̂12 is the unit vector in the direction of r12, r12 is the length
of the vector r12 and û1 and û2 are parallel to the axes of
revolution of molecule 1 and molecule 2. The parameter σ0
is the length of the axis perpendicular to the axis of revolu-
tion, i.e. the minor axis of a calamitic ellipsoid of revolution
and the major axis of a discotic ellipsoid of revolution. The
strength and range parameters are given by

ε(r̂12, û1, û2) = ε0
[
1− χ2(û1 · û2)2

]−1/2
×

{
1− χ′

2

[ (r̂12 · û1 + r̂12 · û2)2

1 + χ′û1 · û2

+
(r̂12 · û1 − r̂12 · û2)2

1− χ′û1 · û2

]}2

(A.10a)

and

σ(r̂12, û1, û2) = σ0

{
1− χ

2

[ (r̂12 · û1 + r̂12 · û2)2

1 + χû1 · û2

+
(r̂12 · û1 − r̂12 · û2)2

1− χû1 · û2

]}−1/2
,

(A.10b)
where the parameter χ is equal to (κ2 − 1)/(κ2 + 1) andκ is
the ratio of the axis of revolution and the axis perpendicular
to this axis,χ′ is equal to (κ′1/2 − 1)/(κ′1/2 + 1) andκ′ is
the ratio of the potential energy minima of the side by side
and end to end configurations of calamitic ellipsoids or the
ratio of the edge-to-edge and face-to-face configurations of
discotic ellipsoids, and ε0 denotes the depth of the potential
minimum in the cross configuration, where r̂12, û1 and û2

are perpendicular to each other. The parameters κ and κ′ have
been given the values 3 and 5, respectively, for the calamitic
ellipsoids and 1/3 and 1/5 for the discotic ellipsoids. Note
that the potential is purely repulsive, so there are no potential
minima but the value of κ′ optimised for the attractive Gay-
Berne potential has been retained. The transport properties of
this system of purely repulsive soft ellipsoids are similar to
those of a system where the molecules interact according to
the conventional Gay-Berne potential with attraction as well,
so the results are still relevant.

APPENDIX IV. EQUATIONS OF MOTION

A. Shear flow or planar Couette flow

In order to study shear flow and to calculate the viscosity
and director alignment angles relative to the streamlines, it is
convenient to apply the SLLOD equations of motion [25]. In
linear space they take the following form:

ṙi =
pi
m

+ γrziex (A.11a)

and

ṗi = F i − γpziex − ξpi, (A.11b)

where riand pi are the position and peculiar momentum, i.e.
the momentum relative to the streaming velocity, of molecule
i, m is the molecular mass, γ = ∂ux/∂z is the shear rate, i. e.
there is a streaming velocity ux in the x-direction varying lin-
early in the z-direction, ex is the unit vector in the x-direction,
F i is the force exerted on molecule i by the other molecules
and ξ is a Gaussian thermostatting multiplier given by the
constraint that the linear peculiar kinetic energy should be a
constant of motion,

ξ =

∑N
i=1 [F i · pi − γpixpiz]∑N

i=1 p
2
i

. (A.11c)
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B. Elongational flow

The SLLOD equations of motion can also be applied to
planar elongational flow. Then a problem is that, if the simu-
lation cell is elongated in the x-direction and contracted in the
z-direction, the simulation can only continue until the width
in the z-direction is equal to twice the range of the interaction
potential. However, if the angle between the elongation direc-
tion and the x-axis is set to an angle, ϕ, the periodic lattice of
originally quadratic simulation cells is gradually deformed to
a lattice of cells shaped like parallelograms. Then it can be
shown that for a special value of this angle, ϕ0, the lattice of
parallelograms can be remapped onto the original quadratic
lattice after a certain time period, so that the simulation be-
comes continuous, see fig. 8 and references [7] and [26–29]
for details.

1b

a a'

c

b'

2 3

4
56

c'

Fig. 8. The Kraynik-Reinelt boundary conditions. The original sim-
ulation cell is square 1. When the angle between the elongation
direction and the horizontal direction is equal to ϕ0, square 1 is
deformed to a parallelogram, which, after a given time interval,
becomes the dashed parallelogram, partially covering the squares (1–
6). Then the triangles a’, b’ and c’ in the parallelogram are periodic
copies of the triangles a, b and c in square 1. If the primed triangles
are moved to the corresponding unprimed triangles, a square is re-
covered and the simulation can proceed. Reproduced from reference
[7], Phys. Chem. Chem. Phys. 17, 3332 (2015) with permission

from the PCCP Owner Societies

Then, if the angle between the elongation direction and the
x-axis is equal to ϕ0 the velocity gradient becomes∇u =
γ(e′xe

′
x − e′ze′z), where e′x = ex cosϕ0 − ez sinϕ0 and

e′z = ex sinϕ0+ey cosϕ0 are the elongation and contraction
directions. Inserting this gradient in the SLLOD equations of
motion gives,

ṙi =
pi
m

+ ri ·∇u =
pi
m

+ γri · (e′xe′x − e′ze′z) (A.12a)

and

ṗi =F i − pi ·∇u− β = F i

−γpi · (e′xe′x − e′ze′z)− ξpi − β,
(A.12b)

where ri and pi are the position and peculiar momentum
of molecule i, F i is the force exerted on molecule i by the
other molecules, m is the molecular mass, u is the streaming
velocity, γ is the strain rate and β is a constraint multiplier
used to conserve the linear momentum.

C. Heat flow algorithm

A temperature gradient can be established by keeping dif-
ferent regions, 1 and 2, of a system at different temperatures,
see fig. 5, by using variant of an algorithm originally due to
Ikeshoji and Hafskjold [38],

mr̈i =F i − α1m

w1iṙi −
1

N

N∑
j=1

w1j ṙj


−α2m

w2iṙi −
1

N

N∑
j=1

w2j ṙj

 ,

(A.13)

where m is the molecular mass, ṙi is the velocity of molecule
i,F i is the force exerted on molecule i by the other molecules,
N is the number of molecules, α1 and α2 are the thermostat-
ting multipliers for region 1 and 2, respectively, and w1i and
w2i are two normalized weight functions for these regions.
The algebraic expressions for the thermostatting multipliers
are determined by requiring that the rate of change of the
kinetic energy should be a constant of motion, see reference
[17] for details. It is convenient to let these two weight func-
tions be Gaussian functions centered in the two regions and
with decay lengths that are considerably shorter than the dis-
tance between the two regions, so that the thermostats can
be regarded as a bar heater and a bar cooler. In this way
the constraints do not interfere with each other and only the
molecules in the rather narrow thermostatted regions are af-
fected by the thermostat, whereas the other molecules move
according to the ordinary Newtonian equations of motion.

D. Director constraint algorithm

Since the molecules studied in the molecular dynamics
simulation works that are reviewed in this article are rigid,
the Euler equations are applied in angular space. Moreover,
since the purpose often is to find the stable orientations of
the director relative to an external dissipative field, it is in-
teresting to calculate the torque exerted on the liquid crystal,
when the director attains various fixed angles relative to this
field. This can be done by adding Lagrangian constraints to
the Euler equations [30],

Iω̇i = Γi + λx
∂Ωx
∂ωi

+ λy
∂Ωy
∂ωi

, (A.14)

where I is the moment of inertia around the axes perpen-
dicular to the axis of revolution, ωi is the angular velocity
of molecule i, Γi is the torque exerted on molecule i by the
other molecules, Ωx and Ωy are the x- and y-components of
the director angular velocity, and λx and λy are Lagrangian
constraint multipliers keeping the x- and y-components of the
director angular acceleration equal to zero. These multipli-
ers are determined in such a way that the director angular
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acceleration becomes a constant of motion. Then if the initial
director angular acceleration and angular velocity are equal to
zero, the director will remain fixed in space for all subsequent
times and the time averages of the constraint multipliers will
be equal to the torque exerted on the director by the external
field.

References

[1] S. Chandrasekhar, Liquid Crystals, Cambridge University
Press, Cambridge, 1992.

[2] P.G. de Gennes and J. Prost, The Physics of Liquid Crystals,
Clarendon Press, Oxford, 1993.

[3] S.R. de Groot and P. Mazur, Nonequilibrium Thermodynam-
ics, Dover, New York, 1984.

[4] S. Sarman, J. Chem. Phys., 103, 393 (1995)
[5] S. Sarman, J. Chem. Phys., 103, 10378 (1995)
[6] J. Jadzyn and G. Czechowski, J. Phys.: Condens. Matter, 13,

L261 (2001)
[7] S. Sarman and A. Laaksonen, Phys. Chem. Chem. Phys. 17,

3332 (2015)
[8] D.J. Evans, D.J. Searles and S.R. Williams, Fundamentals

of Classical Statistical Thermodynamics: Dissipation, Relax-
ation and Fluctuation Theorems, Wiley-VCH (2016)

[9] G.W. Stewart, J. Chem. Phys., 4, 231 (1936)
[10] D.O. Holland and G.W. Stewart, Phys. Rev., 51, 62 (1937)
[11] G.W. Stewart, D.O. Holland and L.M. Reynolds, Phys. Rev.,

58, 174 (1940)
[12] G.W. Stewart, Phys. Rev., 69, 51 (1946).
[13] J.J.C. Picot and A.G. Fredrickson, Ind. Eng. Chem. Fundam.,

1, 84 (1968)
[14] J. Fisher and A.G. Fredrickson, Mol. Cryst. Liq. Cryst., 6,

255 (1969)
[15] M.N. Patharkar, V.S.V. Rajan and J.J.C. Picot, Mol. Cryst.

Liq. Cryst., 15, 225 (1971)

[16] P.K. Currie, Rheol. Acta, 12, 165 (1973)
[17] S. Sarman and A. Laaksonen, Phys. Chem. Chem. Phys., 16,

14741 (2014)
[18] J.G. Gay and B.J. Berne, J. Chem. Phys., 74, 3316 (1981)
[19] M.A. Bates and G.R. Luckhurst, J. Chem. Phys., 104, 6696

(1996)
[20] N. Éber and I. Jánossy, Mol. Cryst. Liq. Cryst., Lett. Sect.,

72, 233 (1982)
[21] P. Oswald and A. Dequidt, Phys. Rev. Lett., 100, 217802

(2008)
[22] P. Oswald, Eur. Phys. J. E: Soft Matter Biol. Phys., 35, 10

(2012)
[23] F.M. Leslie, Quart. Journ. Mech. Appl. Math. 19, 357 (1966)
[24] S. Sarman and A. Laaksonen, J. Chem. Phys., 131, 144904

(2009)
[25] D.J. Evans and G.P. Morriss, Statistical Mechanics of

Nonequilibrium Liquids, Academic Press, London, 1990.
[26] A.M. Kraynik and D.A. Reinelt, Int. J. Multiphase Flow, 18,

1045 (1992)
[27] A. Baranyai and P.T. Cummings, J. Chem. Phys., 103, 10217

(1995)
[28] B.D. Todd and P.J. Daivis, Phys. Rev. Lett., 81, 1118 (1998)
[29] B.D. Todd and P.J. Daivis, Molecular Simulation, 33, 189

(2007)
[30] S. Sarman, J. Chem. Phys., 101, 480 (1994)
[31] F.M. Leslie, Proc. R. Soc. A, A307, 359 (1968)
[32] F.M. Leslie, Symp. Faraday Soc., 5, 33 (1971)
[33] W.G. Hoover, A.J.C. Ladd and B. Moran, Phys. Rev. Lett.,

48, 1818 (1982)
[34] D.J. Evans, W.G. Hoover, B.H. Failor, B. Moran and A.J.C.

Ladd, Phys. Rev. A, 28, 1016 (1983)
[35] W.G. Hoover, Computational Statistical Mechanics, Elsevier

(1991)
[36] D.J. Evans and S. Sarman, Phys. Rev. E, 48, 65 (1992)
[37] S. Hess, J. Non-Equilib. Thermodyn. 11, 175 (1986)
[38] T. Ikeshoji and B. Hafskjold, Molecular Physics, 81,

251(1994)

Sten Sarman received his PhD in physical chemistry at the Royal Institute of Technology in Stockholm,
Sweden in 1990 under the supervision of Professor Roland Kjellander. After this he became a postdoctoral
fellow at the Australian National University under Professor Denis Evans. In 1994 he went back to Sweden to
the department of physical chemistry at Göteborg University in Göteborg, Sweden. His main research interests
are various aspects of liquid state chemical physics such as integral equation theory of inhomogeneous liquids
and molecular dynamics simulation of complex liquids such as liquid crystals and ionic liquids.



250 Sten Sarman, Yonglei Wang, Aatto Laaksonen

Yong-Lei Wang received his PhD in Physical Chemistry in 2013 from Stockholm University, Sweden, under
Prof. A. Laaksonen and Prof. Z-Y. Lu (Jilin University, China). Subsequently, he was a postdoctoral researcher
at Stockholm University working with Prof. A. Laaksonen, and at KTH Royal Institute of Technology with
Prof. L. Kloo (chemistry) and Prof. S. Glavatskih (Mechanics). Since Sept. 2016 he works as a Wallenberg
Postdoctoral Fellow with Prof. M. Fayer at Stanford University. His work has been focused on the development
and application of computational techniques for studying liquid crystals, polyelectrolytes, and ionic liquid.

Aatto Laaksonen is a Professor in Physical Chemistry at Stockholm University; BSc Mathematics, Stockholm
University; PhD in Physical Chemistry Stockholm University 1981; Postdoctoral research with Dr. Victor
Saunders 1982, Daresbury Laboratory, UK; Postdoctoral research with Dr. Enrico Clementi 1983–1985, IBM
research laboratories in Poughkeepsie and in Kingston, USA. Active in the area of computational materials
science, being responsible of modelling work to design new nano- and mesoporous materials for separation
and storage of gases and for heterogeneous catalysis processes inside the pores within the newly established
center-of-excellence at Stockholm University

CMST 23(3) 239–250 (2017) DOI:10.12921/cmst.2016.0000066


