• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 14 (2) 2008, 87-95

Mathematical Modelling of Diffusive and Mechanical Processes in Bodies with Microstructure

Burak Yaroslav 1, Chaplya Yevhen 1,2, Chernukha Olha 1, Owedyk Jan 2,3

1Centre of Mathematical Modelling of Pidstryhach Institute of Applied Problems of Mechanics and Mathematics
The Ukrainian National Academy of Sciences
Dudayev Str. 15, 79005 Lviv, Ukraine
e-mail: {burak/chaplia/cher}@cmm.lviv.ua
2Kazimierz Wielki University in Bydgoszcz
ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
e-mail:{czapla/jowedyk}@ukw.edu.pl
3The Division of Applied Computer Science, Academy of Humanities and Economics in Łódź
ul. Wojska Polskiego 46A, 85-825 Bydgoszcz, Poland
e-mail: jowedyk@wshe.lodz.pl

Received:

Received: 14 May 2008; published online: 8 December 2008

DOI:   10.12921/cmst.2008.14.02.87-95

OAI:   oai:lib.psnc.pl:652

Abstract:

The continuum-thermodynamical approach is proposed for describing mechanical and diffusive processes in bodies with microstructure. Different physical states of admixture particles in a local body structure are taken into account. Features of a stresseddeformable state are discussed on an example of diffusive saturation of a layer in this case.

Key words:

diffusion and mechanics, microstructure, thermodynamical model

References:

[1] Physical metallurgy, Ed. E. W. Cahn, Amsterdam, North-Holland Pub. Com, 1965.
[2] T. I. Kucher, Diffusion from vapour phase into a crystal with account two possible diffusion mechanisms and exchange between them. Physics of Solid State 6(3), 801-810 (1964).
[3] E. C. Aifantis, Continuum basis for diffusion in regions with multiple diffusivity. J. Appl. Phys. 50(3), 1334-1338 (1979).
[4] E. C. Aifantis and J. M. Hill, On the theory of diffusion in media with double diffusivity. I. Basic mathematical results. Q. J. Mech. Math. 33(1), 1-21 (1980).
[5] E. C. Aifantis, A new interpretation of diffusion in highdiffusivity paths – a continuum approach. Acta Met. 27, 683-691 (1982).
[6] Ya. I. Burak, B. P. Galapats and Ye. Ya. Chaplya, Deformation of electrically conducting solids taking into consideration heterodiffusion of charged impurity particles. J. Materials Science 16(5) 395-400 (1981).
[7] Ya. I. Burak, B. P. Galapats and Ye. Ya. Chaplya, Basic equations for process of deformation of electrically conducting solid solutions with account distinct admixture diffusion ways. Mathematical Methods and Physicomechanical Fields 11, 60-66 (1980).
[8] A. C. Eringen, Mechanics of Continuum, New York: John Wiley and Sons (1967).
[9] S. R. De Groot and P. Mazur, Non-equilibrium Thermodynamics, New York: Dover Publications, 1984.
[10] Y. Y. Burak, Y. Y. Chaplya and O. Y. Chernukha, Continual-thermodynamical models of solid solution mechanics, Kyiv: Naukova Dumka (2006).
[11] I. Gyarmati, Non-equilibrium Thermodynamics, New York: Springer-Verlag (1970).
[12] I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Illinois: Sprinfild (1955).
[13] J. W.Gibbs, The Collected Works of J. W. Gibbs, v. 1, New Haven: Yale University Press (1948).
[14] Y. S. Podstrihach and R. N. Shvets, Thermoelastisity of thin shells, Kyiv: Naukova Dumka (1978).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_27_4_2021_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST