Isomorph Scaling of Hard Sphere and Lennard-Jones Fluids
Heyes D.M. 1*, Pieprzyk S. 2, Brańka A.C. 2
1 Royal Holloway, University of London
Department of Physics
Egham, Surrey TW20 0EX, United Kingdom
E-mail: david.heyes@rhul.ac.uk2 Institute of Molecular Physics
Polish Academy of Sciences
M. Smoluchowskiego 17, 60-179 Poznań, Poland
Received:
Received: 8 November 2023; in final form: 12 November 2023; accepted: 13 November 2023; published online: 3 December 2023
DOI: 10.12921/cmst.2023.0000026
Abstract:
The transport coefficients of model monatomic fluids are explored within the context of isomorph theory. An extension of our previous study in this field to the thermal conductivity of Lennard-Jones (LJ) fluids is reported here. The relationship to and comparisons with the behavior of the LJ system and those of hard spheres (HS), which form perfect isomorphs at all densities are made. The HS and LJ transport coefficients obtained by MD simulations when scaled by so-called macroscopic (‘isomorph’) units, and the density is scaled by the freezing density, form curves which are extremely similar, and in near quantitative agreement apart from close to freezing in most cases. It is shown that to a large extent the excellent ‘isomorph’ scaling of the transport coefficients exhibited by the LJ system, even at low densities, can be traced back to the dominance of the repulsive part of this potential for these dynamical quantities, which can reasonably accurately be accounted for by the scaling behavior of hard spheres. Numerical support for this conclusion using molecular dynamics data for the HS and LJ model fluids is presented.
Key words:
isomorphs, Molecular Dynamics simulation, monatomic fluids, transport coefficients
References:
[1] B.L. Holian, Modeling shock-wave deformation via molecular dynamics, Phys. Rev. A 37, 2562–2568 (1988).
[2] F.J. Uribe, W.G. Hoover, C.G. Hoover, Maxwell and Cattaneo’s Time-Delay Ideas Applied to Shockwaves and the Rayleigh-Bénard Problem, Comp. Meth. Sci. Technol. 19, 5–12 (2013).
[3] M.K. Poshtegal, S.A. Mirbagheri, Simulation and modelling of heavy metals and water quality parameters in the river, Scient. Rep. 13, 3020 (2023).
[4] J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 4th ed., Academic Press, Amsterdam (2013).
[5] S.K. Loyalka, E.L. Tipton, R.V. Tompson, Chapman-Enskog solutions to arbitrary order in Sonine polynomials I: Simple, rigid-sphere gas, Physica A 379, 417–435 (2007).
[6] J.R. Dorfman, H. van Beijeren, T.R. Kirkpatrick, Contemporary Kinetic Theory of Matter, Cambridge University Press, Cambridge (2021).
[7] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge (1991)
[8] J.H. Dymond, Corrected Enskog theory and the transport coefficients of liquids, J. Chem. Phys. 60, 969–973 (1974).
[9] J.W. Dufty, Shear stress correlations in hard and soft sphere fluids, Molec. Phys. 100, 2331–2336 (2002).
[10] J.W. Dufty, M.H. Ernst, Exact short time dynamics for steeply repulsive potentials, Molec. Phys. 102, 2123–2135 (2004)
[11] J.W. Dufty, Stress tensor and elastic properties for hard and soft spheres, Gran. Matt. 14, 271–275 (2012).
[12] W.G. Hoover, M. Ross, K.W. Johnson, D. Henderson, J.A. Barker, B.C. Brown, Soft-Sphere Equation of State, J. Chem. Phys. 52, 4931 (1970).
[13] D.M. Heyes, D. Dini, L. Costigliola, J.C. Dyre, Transport coefficients of the Lennard-Jones fluid close to the freezing line, J. Chem. Phys. 151, 204502 (2019).
[14] D.M. Heyes, D. Dini, E.R. Smith, Single trajectory transport coefficients and the energy landscape by molecular dynamics simulations, J. Chem. Phys. 152, 194504 (2020).
[15] W.G. Hoover, A.J.C. Ladd, R.B. Hickman, B.L. Holian, Bulk viscosity via nonequilibrium and equilibrium molecular dynamics, Phys. Rev. A 21, 1756–1760 (1980).
[16] D.M. Heyes, S. Pieprzyk, A.C. Bran´ka, Bulk viscosity of hard sphere fluids by equilibrium and nonequilibrium molecular dynamics simulations, J. Chem. Phys. 157, 114502 (2022).
[17] D.M. Heyes, D. Dini, S. Pieprzyk, A.C. Bran´ka, Departures from perfect isomorph behavior in Lennard-Jones fluids and solids, J. Chem. Phys. 158, 134502 (2023).
[18] N. Gnan, T.B. Schrøder, U.R. Pedersen, N.P. Bailey, J.C. Dyre, Pressure-energy correlations in liquids. IV. “Isomorphs” in liquid phase diagrams, J. Chem. Phys. 131, 234504 (2009).
[19] T.B. Schrøder, N. Gnan, N.P. Bailey, U.R. Pedersen, J.C. Dyre, Pressure-energy correlations in liquids. V. Isomorphs in generalized Lennard-Jones systems, J. Chem. Phys. 134, 164505 (2011).
[20] T.S. Ingebrigtsen, T.B. Schrøder, J.C. Dyre, Isomorphs in Model Molecular Liquids, J. Phys. Chem. B 116, 1018–1034 (2012).
[21] J.C. Dyre, Hidden Scale Invariance in Condensed Matter, J. Phys. Chem. B 118, 10007–10024 (2014).
[22] Z. Sheydaafar, Isomorphs and pseudoisomophs in molecular liquid models, PhD thesis, Roskilde University, Denmark (2021).
[23] K. Moch, N.P. Bailey, Isomorph invariant dynamic mechanical analysis: A molecular dynamics study, Phys. Rev. Mat. 6, 085602 (2022).
[24] T.S. Ingebrigtsen, L. Bøhling, T.B. Schrøder, Thermodynamics of condensed matter with strong pressure energy correlations, J. Chem. Phys. 136, 061102 (2012).
[25] L. Bøhling, T.S. Ingebrigtsen, A. Grzybowski, M. Paluch, J.C. Dyre, T. B. Schrøder, Scaling of viscous dynamics in simple liquids: theory, simulation and experiment, New J. Phys. 14, 113035 (2012).
[26] N.P. Bailey, T.B. Schrøder, J.C. Dyre, Variation of the dynamic susceptibility along an isochrone, J. Chem. Phys. 90, 042310 (2014).
[27] S.A. Khrapak, Gas-liquid crossover in the Lennard-Jones system, J. Chem. Phys. 156, 116101 (2022).
[28] A.J. Schultz, D.A. Kofke, Comprehensive high-precision high-accuracy equation of state and coexistence properties for classical Lennard-Jones crystals and low-temperature fluid phases, J. Chem. Phys. 149, 204508 (2018).
[29] A.J. Schultz, D.A. Kofke, Erratum: ‘Comprehensive high-precision high-accuracy equation of state and coexistence properties for classical Lennard-Jones crystals and low temperature fluid phases’, J. Chem. Phys. 153, 059901 (2020).
[30] S.A. Khrapak, A.G. Khrapak, Transport properties of Lennard-Jones fluids: Freezing density scaling along isotherms, Phys. Rev. E 103, 042122 (2021).
[31] S.A. Khrapak, A.G. Khrapak, Freezing Temperature and Density Scaling of Transport Coefficients, J. Phys. Chem. Lett. 13, 2674–2678 (2022).
[32] S.A. Khrapak, A.G. Khrapak, Freezing density scaling of fluid transport properties: Application to liquefied noble gases, J. Chem. Phys. 157, 014501 (2022).
[33] S.A. Khrapak, A.G. Khrapak, Minima of shear viscosity and thermal conductivity coefficients of classical fluids, Phys. Fluids 34, 027102 (2022).
[34] W.T. Ashurst, W.G. Hoover, Dense fluid shear viscosity and thermal conductivity—the excess, AIChE Journal 21, 410–411 (1975).
[35] L.V. Woodcock, Equation of State for the Viscosity of Lennard-Jones Fluids, AIChE Journal 52, 438–446 (2006).
[36] J.J. Erpenbeck, W.W. Wood, Self-diffusion coefficient for the hard-sphere fluid, Phys. Rev. A 43, 4254–4261 (1991).
[37] J.J. Erpenbeck, W.W. Wood, Molecular Dynamics Calculations of Shear Viscosity Time-Correlation Functions for Hard Spheres, J. Stat. Phys. 24, 455–468 (1981).
[38] P. Résibois, M. de Leener, Classical Kinetic Theory of Fluids, p. 168, John Wiley & Sons, New York (1977).
[39] J.J. Erpenbeck, W.W. Wood, Molecular-dynamics calculations of the velocity autocorrelation function: Hard-sphere results, Phys. Rev. A 32, 412–422 (1985).
[40] I.H. Bell, R. Messerly, M. Thol, L. Costigliola, J.C. Dyre, Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid, J. Phys. Chem. B 123, 6345–6363 (2019).
[41] S. Pieprzyk, A.C. Bran´ka, M.N. Bannerman, M. Chudak, D.M. Heyes, Thermodynamic and dynamical properties of the hard sphere system revisited by molecular dynamics simulation, Phys. Chem. Chem. Phys. 21, 6886 (2019).
[42] J.H. Dymond, A Theory-Based Method for Correlation and Prediction of Dense-Fluid Transport Properties, Int. J. Thermophys. 18, 303–312 (1997).
[43] J.H. Dymond, M.J. Assael, [In:] Transport Properties of Fluids: Their correlation, prediction and estimation, Eds. J. Millat, J.H. Dymond, C.A. Nieto de Castro, Chap. 10, p. 226, Cambridge University Press, New York (1996).
[44] S. Pieprzyk, A.C. Bran´ka, D.M. Heyes, M.N. Bannerman, A comprehensive study of the thermal conductivity of the hard sphere fluid and solid by molecular dynamics simulation, Phys. Chem. Chem. Phys. 22, 8834–8845 (2020).
[45] K. Meier, Computer Simulation and Interpretation of the Transport Coefficients of the Lennard-Jones Model Fluid, PhD thesis, University of the Federal Armed Forces Hamburg (2002).
[46] M. Bugel, G. Galliero, Thermal conductivity of the Lennard-Jones fluid: an empirical correlation, Chem. Phys. 352, 249–257 (2008).
[47] D.M. Heyes, Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment, Phys. Rev. B 37, 5677–5696 (1988).
[48] V.G. Baidakov, S.P. Protsenko, Metastable Lennard-Jones fluids. II. Thermal conductivity, J. Chem. Phys. 140, 214506 (2014).
[49] A.E. Nasrabad, R. Laghaei, B.C. Eu, Molecular theory of thermal conductivity of the Lennard-Jones fluid, J. Chem. Phys. 124, 084506 (2006).
The transport coefficients of model monatomic fluids are explored within the context of isomorph theory. An extension of our previous study in this field to the thermal conductivity of Lennard-Jones (LJ) fluids is reported here. The relationship to and comparisons with the behavior of the LJ system and those of hard spheres (HS), which form perfect isomorphs at all densities are made. The HS and LJ transport coefficients obtained by MD simulations when scaled by so-called macroscopic (‘isomorph’) units, and the density is scaled by the freezing density, form curves which are extremely similar, and in near quantitative agreement apart from close to freezing in most cases. It is shown that to a large extent the excellent ‘isomorph’ scaling of the transport coefficients exhibited by the LJ system, even at low densities, can be traced back to the dominance of the repulsive part of this potential for these dynamical quantities, which can reasonably accurately be accounted for by the scaling behavior of hard spheres. Numerical support for this conclusion using molecular dynamics data for the HS and LJ model fluids is presented.
Key words:
isomorphs, Molecular Dynamics simulation, monatomic fluids, transport coefficients
References:
[1] B.L. Holian, Modeling shock-wave deformation via molecular dynamics, Phys. Rev. A 37, 2562–2568 (1988).
[2] F.J. Uribe, W.G. Hoover, C.G. Hoover, Maxwell and Cattaneo’s Time-Delay Ideas Applied to Shockwaves and the Rayleigh-Bénard Problem, Comp. Meth. Sci. Technol. 19, 5–12 (2013).
[3] M.K. Poshtegal, S.A. Mirbagheri, Simulation and modelling of heavy metals and water quality parameters in the river, Scient. Rep. 13, 3020 (2023).
[4] J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 4th ed., Academic Press, Amsterdam (2013).
[5] S.K. Loyalka, E.L. Tipton, R.V. Tompson, Chapman-Enskog solutions to arbitrary order in Sonine polynomials I: Simple, rigid-sphere gas, Physica A 379, 417–435 (2007).
[6] J.R. Dorfman, H. van Beijeren, T.R. Kirkpatrick, Contemporary Kinetic Theory of Matter, Cambridge University Press, Cambridge (2021).
[7] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge (1991)
[8] J.H. Dymond, Corrected Enskog theory and the transport coefficients of liquids, J. Chem. Phys. 60, 969–973 (1974).
[9] J.W. Dufty, Shear stress correlations in hard and soft sphere fluids, Molec. Phys. 100, 2331–2336 (2002).
[10] J.W. Dufty, M.H. Ernst, Exact short time dynamics for steeply repulsive potentials, Molec. Phys. 102, 2123–2135 (2004)
[11] J.W. Dufty, Stress tensor and elastic properties for hard and soft spheres, Gran. Matt. 14, 271–275 (2012).
[12] W.G. Hoover, M. Ross, K.W. Johnson, D. Henderson, J.A. Barker, B.C. Brown, Soft-Sphere Equation of State, J. Chem. Phys. 52, 4931 (1970).
[13] D.M. Heyes, D. Dini, L. Costigliola, J.C. Dyre, Transport coefficients of the Lennard-Jones fluid close to the freezing line, J. Chem. Phys. 151, 204502 (2019).
[14] D.M. Heyes, D. Dini, E.R. Smith, Single trajectory transport coefficients and the energy landscape by molecular dynamics simulations, J. Chem. Phys. 152, 194504 (2020).
[15] W.G. Hoover, A.J.C. Ladd, R.B. Hickman, B.L. Holian, Bulk viscosity via nonequilibrium and equilibrium molecular dynamics, Phys. Rev. A 21, 1756–1760 (1980).
[16] D.M. Heyes, S. Pieprzyk, A.C. Bran´ka, Bulk viscosity of hard sphere fluids by equilibrium and nonequilibrium molecular dynamics simulations, J. Chem. Phys. 157, 114502 (2022).
[17] D.M. Heyes, D. Dini, S. Pieprzyk, A.C. Bran´ka, Departures from perfect isomorph behavior in Lennard-Jones fluids and solids, J. Chem. Phys. 158, 134502 (2023).
[18] N. Gnan, T.B. Schrøder, U.R. Pedersen, N.P. Bailey, J.C. Dyre, Pressure-energy correlations in liquids. IV. “Isomorphs” in liquid phase diagrams, J. Chem. Phys. 131, 234504 (2009).
[19] T.B. Schrøder, N. Gnan, N.P. Bailey, U.R. Pedersen, J.C. Dyre, Pressure-energy correlations in liquids. V. Isomorphs in generalized Lennard-Jones systems, J. Chem. Phys. 134, 164505 (2011).
[20] T.S. Ingebrigtsen, T.B. Schrøder, J.C. Dyre, Isomorphs in Model Molecular Liquids, J. Phys. Chem. B 116, 1018–1034 (2012).
[21] J.C. Dyre, Hidden Scale Invariance in Condensed Matter, J. Phys. Chem. B 118, 10007–10024 (2014).
[22] Z. Sheydaafar, Isomorphs and pseudoisomophs in molecular liquid models, PhD thesis, Roskilde University, Denmark (2021).
[23] K. Moch, N.P. Bailey, Isomorph invariant dynamic mechanical analysis: A molecular dynamics study, Phys. Rev. Mat. 6, 085602 (2022).
[24] T.S. Ingebrigtsen, L. Bøhling, T.B. Schrøder, Thermodynamics of condensed matter with strong pressure energy correlations, J. Chem. Phys. 136, 061102 (2012).
[25] L. Bøhling, T.S. Ingebrigtsen, A. Grzybowski, M. Paluch, J.C. Dyre, T. B. Schrøder, Scaling of viscous dynamics in simple liquids: theory, simulation and experiment, New J. Phys. 14, 113035 (2012).
[26] N.P. Bailey, T.B. Schrøder, J.C. Dyre, Variation of the dynamic susceptibility along an isochrone, J. Chem. Phys. 90, 042310 (2014).
[27] S.A. Khrapak, Gas-liquid crossover in the Lennard-Jones system, J. Chem. Phys. 156, 116101 (2022).
[28] A.J. Schultz, D.A. Kofke, Comprehensive high-precision high-accuracy equation of state and coexistence properties for classical Lennard-Jones crystals and low-temperature fluid phases, J. Chem. Phys. 149, 204508 (2018).
[29] A.J. Schultz, D.A. Kofke, Erratum: ‘Comprehensive high-precision high-accuracy equation of state and coexistence properties for classical Lennard-Jones crystals and low temperature fluid phases’, J. Chem. Phys. 153, 059901 (2020).
[30] S.A. Khrapak, A.G. Khrapak, Transport properties of Lennard-Jones fluids: Freezing density scaling along isotherms, Phys. Rev. E 103, 042122 (2021).
[31] S.A. Khrapak, A.G. Khrapak, Freezing Temperature and Density Scaling of Transport Coefficients, J. Phys. Chem. Lett. 13, 2674–2678 (2022).
[32] S.A. Khrapak, A.G. Khrapak, Freezing density scaling of fluid transport properties: Application to liquefied noble gases, J. Chem. Phys. 157, 014501 (2022).
[33] S.A. Khrapak, A.G. Khrapak, Minima of shear viscosity and thermal conductivity coefficients of classical fluids, Phys. Fluids 34, 027102 (2022).
[34] W.T. Ashurst, W.G. Hoover, Dense fluid shear viscosity and thermal conductivity—the excess, AIChE Journal 21, 410–411 (1975).
[35] L.V. Woodcock, Equation of State for the Viscosity of Lennard-Jones Fluids, AIChE Journal 52, 438–446 (2006).
[36] J.J. Erpenbeck, W.W. Wood, Self-diffusion coefficient for the hard-sphere fluid, Phys. Rev. A 43, 4254–4261 (1991).
[37] J.J. Erpenbeck, W.W. Wood, Molecular Dynamics Calculations of Shear Viscosity Time-Correlation Functions for Hard Spheres, J. Stat. Phys. 24, 455–468 (1981).
[38] P. Résibois, M. de Leener, Classical Kinetic Theory of Fluids, p. 168, John Wiley & Sons, New York (1977).
[39] J.J. Erpenbeck, W.W. Wood, Molecular-dynamics calculations of the velocity autocorrelation function: Hard-sphere results, Phys. Rev. A 32, 412–422 (1985).
[40] I.H. Bell, R. Messerly, M. Thol, L. Costigliola, J.C. Dyre, Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid, J. Phys. Chem. B 123, 6345–6363 (2019).
[41] S. Pieprzyk, A.C. Bran´ka, M.N. Bannerman, M. Chudak, D.M. Heyes, Thermodynamic and dynamical properties of the hard sphere system revisited by molecular dynamics simulation, Phys. Chem. Chem. Phys. 21, 6886 (2019).
[42] J.H. Dymond, A Theory-Based Method for Correlation and Prediction of Dense-Fluid Transport Properties, Int. J. Thermophys. 18, 303–312 (1997).
[43] J.H. Dymond, M.J. Assael, [In:] Transport Properties of Fluids: Their correlation, prediction and estimation, Eds. J. Millat, J.H. Dymond, C.A. Nieto de Castro, Chap. 10, p. 226, Cambridge University Press, New York (1996).
[44] S. Pieprzyk, A.C. Bran´ka, D.M. Heyes, M.N. Bannerman, A comprehensive study of the thermal conductivity of the hard sphere fluid and solid by molecular dynamics simulation, Phys. Chem. Chem. Phys. 22, 8834–8845 (2020).
[45] K. Meier, Computer Simulation and Interpretation of the Transport Coefficients of the Lennard-Jones Model Fluid, PhD thesis, University of the Federal Armed Forces Hamburg (2002).
[46] M. Bugel, G. Galliero, Thermal conductivity of the Lennard-Jones fluid: an empirical correlation, Chem. Phys. 352, 249–257 (2008).
[47] D.M. Heyes, Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment, Phys. Rev. B 37, 5677–5696 (1988).
[48] V.G. Baidakov, S.P. Protsenko, Metastable Lennard-Jones fluids. II. Thermal conductivity, J. Chem. Phys. 140, 214506 (2014).
[49] A.E. Nasrabad, R. Laghaei, B.C. Eu, Molecular theory of thermal conductivity of the Lennard-Jones fluid, J. Chem. Phys. 124, 084506 (2006).