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Abstract: The transport coefficients of model monatomic fluids are explored within the context of isomorph theory. An ex-
tension of our previous study in this field to the thermal conductivity of Lennard-Jones (LJ) fluids is reported here. The re-
lationship to and comparisons with the behavior of the LJ system and those of hard spheres (HS), which form perfect
isomorphs at all densities are made. The HS and LJ transport coefficients obtained by MD simulations when scaled by so-
called macroscopic (‘isomorph’) units, and the density is scaled by the freezing density, form curves which are extremely
similar, and in near quantitative agreement apart from close to freezing in most cases. It is shown that to a large extent the
excellent ‘isomorph’ scaling of the transport coefficients exhibited by the LJ system, even at low densities, can be traced
back to the dominance of the repulsive part of this potential for these dynamical quantities, which can reasonably accurately
be accounted for by the scaling behavior of hard spheres. Numerical support for this conclusion using molecular dynamics
data for the HS and LJ model fluids is presented.
Key words: isomorphs, transport coefficients, monatomic fluids, molecular dynamics simulation

I. Introduction

The transport coefficients (TC) of small molecule
(e.g ., argon and nitrogen) gases and liquids are of practical
importance and of considerable interest from a theoretical
perspective. The main TC of typical interest are the shear
viscosity, ηs, the self-diffusion coefficient, D and the ther-
mal conductivity, λ. The viscosity and thermal conductiv-
ity are useful as input parameters in continuum level simu-
lations of various hydrodynamic flows, for example, in the
Navier-Stokes modelling of shock-waves [1, 2]. It is impor-
tant to know the self-diffusion coefficient for modelling at
a continuum level chemical processes in solution, for exam-
ple, heavy metal ion transfer in rivers [3].

This work addresses some fundamental issues of rele-
vance to these objectives by being concerned with the scal-

ing properties of transport coefficient of real fluids using the
Lennard-Jones (LJ) potential as a convenient model test sys-
tem.

For about 100 years the hard sphere (HS) fluid has
been used as a reference for the physical and thermody-
namic properties of real molecule systems whose effective
pair interactions are continuous but steeply repulsive at short
range. The HS potential is an extreme limiting case of such
a short range repulsive potential. The HS system has found
widespread use in forming the basis of, for example, per-
turbation theories of the thermodynamic properties of liq-
uids [4], and also via Enskog’s theory, of their transport co-
efficients [5–7].

The starting point for formulating a theory of the small
molecule transport coefficients is the Boltzmann equation,
which predicts the evolution of an assembly of point parti-
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cles described in a probabilistic way assuming that a series
of uncorrelated binary collisions of the particles takes place.
Enskog extended this approximate treatment to include ex-
cluded volume effects (i .e., the fact that two molecules can-
not occupy the same space if they overlap to any significant
extent) but retaining the random or uncorrelated collision ap-
proximation [5–7].

Molecular Dynamics (MD) computer simulation has
over the last ca. 60 years shown that Enskog’s equation is
a remarkably accurate representation of the HS fluid system,
except close to the freezing density for some of the TC, both
in terms of the magnitude of the TC as a function of number
density, and in the near exponential decay of the time corre-
lation functions at short times (i .e., less than the mean time
between the collisions of a given particle). The actual HS
system as modelled by MD becomes more viscous than the
LJ fluid close to the freezing point than predicted by Enskog
theory (ET) because of many particle cooperative dynami-
cal effects between the particles which are not accounted for
in ET.

An additional feature of the HS system, which is of-
ten not specifically commented on, is that the predicted
TC (‘X’) (and other physical and thermodynamic prop-
erties) have a relatively trivial temperature dependence.
At a given number density, ρ, the ηs, λ and D increase with
increasing temperature, T , (i .e., X ∝

√
T ) [8]. Increasing

the temperature means the same temporal distribution of as-
sembly states but appearing at a faster rate. Therefore, for ex-
ample, ηs/

√
T is a constant at all temperatures with a fixed

density. In more recent terminology, this feature is referred
to as the system exhibiting ‘isomorphic’ behavior, which
means that the thermodynamic and TC (ρ, T ) phase diagram
is in practice one dimensional. This applies to phases with
the same symmetry, and is also applicable therefore to solids
which maintain the same crystal structure over the given den-
sity and temperature range, although the discussion in this
work will implicitly be concerned with fluids.

This simple and conceptually useful scaling behavior
extends to that of the (also widely studied) model inverse
power (IP) potential fluid system (a list of the acronyms
used in this work is given in Tab. 1). The IP pair potential
is ϕ(r) = ϵ(σ/r)n, where ϵ and σ are the charactistic en-
ergy of interaction and diameter of the two particles, respec-
tively, r is the separation between the centers of the two par-
ticles, and n > 3 is the ‘stiffness’ exponent. In the n → ∞
limit, the IP potential approaches the HS case and the IP
static properties converge to those of the HS, although there
are some differences between certain HS and IP dynamical
properties such as the time correlation functions which arise
from the discontinuous nature of the HS potential, while the
IP potential is continuous no matter how large n is [9–11].
The IP phase diagram isomorph is defined by a series of lines
in the density-temperature plane where ρn/3/T is a con-
stant, as was proved from statistical mechanics by Hoover
et al. [12] to apply to the static and dynamical properties.

The HS and IP systems form perfect isomorphs, and in
the HS case this is particularly simple, as each isomorph is
a vertical line at a given HS number density on the density-
temperature plane, on the abscissa-ordinate axes respec-
tively.

Consider two IP state points (denoted by the subscripts,
‘0’ and ‘1’) of a model system of particles at densities,
ρ0 and ρ1 and temperatures, T0 and T1. The term ‘isomorph’
which means literally, ‘constant form or structure’ has the
useful consequence that when the coordinates of the parti-
cles of state point 0 are scaled by the factor [ρ0/ρ1]1/3 then
if, T1 = T0[ρ1/ρ0]

n/3 these two state points are thermody-
namically and dynamically identical after ensemble or time
averaging. This is in the sense that the physical and dy-
namical properties are the same when scaled in so-called
isomorph or ‘macroscopic’ units (MU) which makes each
quantity dimensionless. For example, for the average poten-
tial energy of the system, U , this means that U0/kBT0 =
= U1/kBT1, where kB is Boltzmann’s constant, which sim-
plifies considerably the description of the system. A quan-
tity, Y , expressed in MU is denoted by Ỹ , and hence the
above equality can be rewritten concisely as, Ũ0 = Ũ1 in
MU. The transport coefficients investigated here are defined
in MU in the next section.

For the LJ model system the IP ρn/3/T relationship ap-
plies in the arbitrarily high temperature limit (where n = 12
in this case), which is called the ‘high temperature limit’ in
this work.

The Lennard-Jones pair potential is defined as follow,
ϕ(r) = 4ϵ[(σ/r)12 − (σ/r)6], where again ϵ and σ set the
energy and lengthscales, respectively. It might be expected
that because of the different density scaling of the repulsive
(i .e., ∼ (σ/r)12) and attractive, (i .e., ∼ −(σ/r)6) parts
of the total potential energy that the LJ system should not
form isomorphs. However, over the last two decades it has
been shown that the LJ (and other model potential) systems
can exhibit isomorphic behavior to a good approximation.
While this can be ascribed in part to the increasing domi-
nance of the repulsive part of the potential in the high tem-
perature limit, this cannot be the entire explanation. This is
because these isomorphs can continue down to temperatures
in the liquid region which terminate on the liquid side of the
vapor-liquid binodal or on the freezing line. This is a region
where the attractive interactions become increasingly impor-
tant in a (perhaps) non-additive way in determining the phys-
ical properties, and cannot be neglected. The LJ isomorph
(ρ, T ) line increasingly deviates from the IP isomorph line
as the temperature decreases from the high temperature limit
(it shifts to higher density at a given temperature [13]). In the
high temperature limit the LJ system and its properties con-
verge to those of the n = 12 IP system (note that the IP ϵ is
replaced by 4ϵ in this comparison).

While all the properties of an IP and HS system ex-
hibit isomorph or macroscopic scaling, this is not the case
for the LJ system. For example, while the radial distribu-
tion function shows an excellent degree of collapse when
r is replaced by rρ1/3, and ηs, λ and D in MU also col-
lapse to the same value along an isomorph when expressed
in macroscopic units, the pressure and the bulk viscosity, ηB,
in MU do not. This can be simply explained for some prop-
erties but is not so obvious why it is for others. For example,
for the pressure a model system potential may be the sum
of terms whose potential energy (for example) components
scale differently with density. This may in part explain why
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the bulk viscosity does not scale with MU, as the pressure
of the system is involved in its definition. The bulk viscosity
and the other three transport coefficients are often computed
by MD using the Green-Kubo time correlation function ap-
proach [14]. The bulk viscosity can also be calculated by
a non-equilibrium molecular dynamics method invented by
Hoover et al. [15, 16]. The fundamental reason for these of-
ten ‘sharp’ differences still requires further investigation.

The excess entropy, sex, is defined as the difference be-
tween the total entropy of the system and its ideal gas value
if it were at the same temperature and density [17]. An iso-
morph for the LJ and other non-IP systems has to satisfy two
criteria. It has to be a line of constant excess entropy, sex,
which has been termed a ‘configurational adiabat’. In addi-
tion the property of interest has to show the scaling collapse
when expressed in MU (when this happens, the system is
said to be a ‘strongly correlated’ for that property). It is the
case that all the state points of a fluid fall on a configurational
adiabat but not all configurational adiabats are isomorphs for
a given property (if any). An isomorph has to be a configu-
rational adiabat but a configurational adiabat does not also
have to be an isomorph for a property of interest.

Previous MD and theoretical treatments of the trans-
port coefficients of the hard sphere and Lennard-Jones (and
other molecular systems) have commented on their similar-
ity. One of the puzzling features is the good ‘isomorphic’
unit collapse of the data at low densities, where the LJ sys-
tem does not exhibit isomorphs in the thermodynamic quan-
tities. This has led to the introduction of the term ‘isodyne’
for such an occurrence, i .e., where the transport coefficients
collapse to a single value on an isodyne (ρ, T ) line, when ex-
pressed in macroscopic units, but the static properties do not
exhibit comparable lines in that density region. The reason
why isodynes appear to be more prevalent than isomorphs is
worthy of further consideration, and one of the main aspects
of this work.

There are a variety of ways in which isomorphs can be
mapped out in practice for a model system using molecular
simulation. One way is to increment the density and temper-
ature in small steps using a thermodynamic formula which is
consistent with a constant excess entropy [18, 19]. Another
procedure, called the Direct Isomorph Check (DIC) method,
uses the requirement that along an isomorph the potential
energies of any two configurations at two state points con-
nected by uniform density scaling of the particle coordinates
have to be strongly correlated [18, 20, 21]. Another more re-
cent method is a variant of the DIC method, which employs
the forces on the individual molecules of a single particle
assembly configuration [22, 23]. In the latter two methods
a ‘virtual’ isomorph state is generated by scaling the coor-
dinates of the particles and the MD box sidelength to a new
proposed density, and then determining the isomorph tem-
perature of the virtual state point from the slope of a plot of
the ensuing energy or force, respectively, compared to those
of the original state. Each virtual state gives a point on the
same isomorph as that on which the simulated or ‘reference’
state lies. The advantage of these latter two methods is that
for a particular isomorph a simulation at a single density and
temperature is only required, and the density ‘jumps’ to the

virtual states can be relatively large therefore compared to
the first, small step method described first.

The isomorphs of the LJ system have already been in-
vestigated extensively, e.g ., in Refs. [24–27]. Relatively re-
cently it has been shown that the isomorphs for the fluid TC,
when close to the freezing line, are to a very good approxi-
mation parallel to it. This means that the isomorph line can
be expressed as a function of the reduced number density,
ρ/ρfr(T ), where ρfr is the temperature-dependent freezing
density which is now known accurately for the LJ system
[28, 29]. This feature is termed ‘freezing density scaling’,
(FDS). The FDS collapse of transport coefficient values in
MU is observed, perhaps surprisingly, even at low gas-like
densities, (see Refs. [27, 30–33] and, from the present au-
thors, see Ref. [17]) where the systems are not LJ isomorphs.
A suggested reason for this will emerge from the discussion
in this work.

The quantity ≃ ρ
−1/3
fr could be viewed as an effective

hard sphere diameter, σHS, and therefore ρ/ρfr(T ) of the LJ
system can be considered to be equivalent to the same ratio,
ρ/ρfr for the hard sphere system (which is not temperature
dependent). Hence the role of the FDS may be deemed to
map the LJ system at any temperature onto its nearest equiv-
alent hard sphere system, and hence implicitly having the
same excess entropy as the HS fluid.

Comparisons between the transport coefficients of the
HS and LJ system within the context of isomorphs have al-
ready been made in the literature. Nevertheless, some new
aspects and insights of their relative behavior e.g ., in re-
gard to FDS, are brought our here. In addition, the exer-
cise of treating the LJ system as a pseudo n = 12 IP case
(which form perfect isomorphs) has already been developed
in the literature by Ashurst and Hoover [34], and Wood-
cock [35], and the present work therefore builds to a large
extent on their pioneering treatments. This investigation de-
velops these themes within the context of the relatively re-
cently developed isomorph theory.

This work continues our previous study into the FDS
of the transport coefficients in the LJ liquid and supercriti-
cal fluid parts of its phase diagram [17]. Our previous treat-
ment on the isomorphic behavior of ηs and D is extended to
include the thermal conductivity. Comparisons between the
isomorph scaling behavior of the hard sphere and LJ systems

Tab. 1. A list of the acronyms and their definitions used in this work

Acronym Definition

DIC Direct isomorph check

FDS Freezing density scaling

HS Hard sphere

IP Inverse power

LJ Lennard-Jones

MD Molecular dynamics

MU Macroscopic unit

TC Transport coefficient
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are made, and further insights into their relative behavior are
given, which is covered in the next section.

II. Theory

For the shear viscosity and thermal conductivity, the iso-
morph or MU scaled values are η̃s = ηsρ

−2/3T−1/2 and
λ̃ = λρ−2/3T−1/2, respectively, and for the self-diffusion
coefficient, D̃ = Dρ1/3T−1/2. This scaling was applied to
both the HS and LJ transport coefficients. The first two TC
are collective properties while the third is based on a single-
particle quantity, which gives rise to some qualitative differ-
ences in the appearance of the density dependence of these
two classes of TC.

The Enskog theory of transport coefficients of hard
spheres is the starting point of the present analysis. The HS
system can be considered to be the most fundamental exam-
ple of a perfect isomorph forming model system.

The HS shear viscosity, ηs, is obtained from Eq. (18) in
Ref. [36] (and below Eq. (10) in Ref. [37]) as follows,

ηs,E = ηs,0

[
1.016

g(σ)
+ 0.8128bρ+ 0.7737g(σ)b2ρ2

]
=

= ηs,0
ρb

Z − 1

[
1.016

(
1+

2

5
(Z−1)

)2
+

48

25π
(Z−1)2

]
,

ηs,0 =
5

16σ2

(
mkBT

π

)1/2

, (1)

where σ is the hard sphere diameter, b = 2πσ3/3, g(r) is the
radial distribution function and Z = P/ρkBT is the com-
pressibility factor (P is the pressure). The value of the shear
viscosity in the limit of zero density from kinetic theory is,
ηs,0. It is convenient to set σ, m and kB to unity in the fol-
lowing equations. Now as in MU, η̃s = ηsρ

−2/3T−1/2, then

η̃s,E = η̃s,0

[
1.016

g(1+)
+ 0.8128bρ+ 0.7737g(1+)b2ρ2

]
=

= η̃s,0
ρb

Z−1

[
1.016

(
1+

2

5
(Z − 1)

)2
+

48

25π
(Z−1)2

]
,

η̃s,0 =
5

16
√
π
ρ−2/3. (2)

The radial distribution function on contact of the hard
spheres tends to 1 in the zero density limit. When expressed
in MU the temperature does not appear in Eq. (2). Similarly
for the thermal conductivity, λ [38],

λ̃E = λ̃0

[
1.02522

g(1+)
+1.23026bρ+ 0.776516g(1+)b2ρ2

]
=

= λ̃0
ρb

Z−1

[
1.02522

(
1+

3

5
(Z−1)

)2
+

32

25π
(Z−1)2

]
,

λ̃0 =
75

64
√
π
ρ−2/3. (3)

The Enskog formula for the self-diffusion coefficient, D,
is [38, 39],

D̃E = D̃0
1.01896

g(1+)
= 1.01896D̃0

bρ

Z − 1
,

D̃0 =
3

8ρ
√
π
ρ1/3 =

3

8
√
π
ρ−2/3, (4)

in MU. Eqs. (1)-(4) show that in the low density limit all
three transport coefficients in MU diverge as ∼ ρ−2/3, but
with no temperature dependence. An analysis in terms of the
excess entropy, sex, gives a term [40], ∼ s

−2/3
ex , because the

excess entropy becomes increasingly proportional to ρ as it
decreases in the low density limit. The equation of state of
hard spheres, Z, used here in the Enskog formulas is the an-
alytic expression ‘mKLM’ given in Eq. (4) in Ref. [41].

Khrapak and coworkers discovered freezing density scal-
ing [27, 30–33] for LJ and the noble gas liquids. Consider
a potential isomorph line which passes through the state
point, T0, ρ0. Written formally, the freezing isomorph line
(using the subscript, ‘i’) in the form of a temperature depen-
dent density, ρi(T ) is shifted away from the freezing density
line by a constant ratio. This is specified as follows,

R = ρ0/ρfr(T0), ρi(T ) = Rρfr(T ), (5)

which may be said to be ‘parallel’ to the freezing line, where
the density shift factor, R is the ratio of the reference density,
ρ0, divided by the density along the freezing line, both when
T = T0. For the HS system, ρi(T ) is a vertical line when
T is along the ordinate axis.

The properties of the HS system and its TC have been
used in previous studies to explain the trends in polyatomic
real molecules, some of which might be considered to be
far removed from the LJ model system (e.g ., hexadecane).
For example Dymond and coworkers used a HS analogy [8],
in a series of publications and found that the transport co-
efficients, ‘X’, of a wide range of compounds determined
by experiment shared a common relationship [8, 42, 43], of
the form, X̃ = FX(ρ/ρD,0), where ρD,0 is a temperature-
dependent reference density in the high pressure limit, which
is the same for all of the transport coefficients considered in
that work. This density takes on a similar role to the freezing
density in the FDS approach.

The HS and LJ TC data were fitted to the function in this
work with,

X̃ = aXx−2/3 + bXx+ cXx2 + dXx3 + eXefxx, (6)

where x ≡ ρ/ρfr(T ), and ρfr, is calculated from the Schultz
and Kofke formula given in Refs. [28, 29]. The expression
in Eq. (6) bears some similarity with the Enskog formulas
above for the shear viscosity and thermal conductivity, but
with the extra terms is sufficiently flexible to represent accu-
rately any departures from Enskog (even for HS) exhibited
by the actual behavior of the model monatomic fluid system,
which can be determined accurately by molecular dynamics
simulations. Eq. (6) can also be used to represent the self-
diffusion coefficient data, with some parameters having dif-
ferent signs from those of the shear viscosity and thermal
conductivity cases. Tab. 2 gives the values of the constants
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in Eq. (6) for each transport coefficient for the HS and LJ
systems.

The curves for each transport coefficient given by the ex-
pression in Eq. (6) fitted to the LJ MD simulation data can
be used to express the TC in various units for an arbitrary
state point in the LJ fluid phase diagram. First, for any given
(ρ, T ) state point, that equation gives the transport coeffi-
cient in MU units, after first determining the dimensionless
density (‘x’ in the equation) at that temperature. Hence the
transport coefficients at that state point can be computed in
LJ units of ϵ, σ and the mass of the particle from their def-
initions, i .e., ηs = η̃sρ

2/3T 1/2, and λ = λ̃ρ2/3T 1/2 and
D = D̃ρ−1/3T 1/2. Following on from this step, these trans-
port coefficients in LJ units can be converted to SI units for
any given small molecule which can be represented by a LJ
potential to a reasonable approximation, using its value of
ϵ and σ.

III. Results

This section focusses on comparing the behavior of the
HS and LJ TC when the TC are expressed in terms of MU
and the density is normalized by the freezing density in both
cases. First the TC behavior of hard sphere fluids is consid-
ered.

III. 1. Hard Spheres
Fig. 1 shows the three transport coefficients of hard

spheres in isomorph units plotted as a function of ρ/ρfr.

Fig. 1. Hard sphere transport coefficient data taken from
Refs. [41, 44] and scaled to be in isomorph units are shown by
symbols. Fits to these data using the generic formula in Eq. (6) are
shown as continuous red lines on the figure. The least squares fit pa-
rameters for each transport coefficient are given in Tab. 2. The dif-
fusion coefficient data are shifted upwards by 15 and multiplied by
×10 for clarity. The Enskog formula predictions using Eqs. (1)–(4)
are also shown as black continuous lines on the figure. All quanti-

ties are normalized to make them dimensionless

For hard spheres [41], ρfr = 0.9392(1) and is temperature
independent. The data is taken from Refs. [41, 44]. The ex-
pression given in Eq. (6) fitted to these data are also given
in Fig. 1. The fit parameters for the expression in Eq. (6)
are presented in Tab. 2. The predictions using the Enskog
formulas given in Eqs. (1)–(4) are also shown on the figure.
The Enskog expressions agree well with the MD data up to
ρ ∼ 0.8 for the viscosity and practically up to freezing for
the thermal conductivity. The Enskog formula for D̃ under-
estimates the MD values for intermediate densities as is well
known and due to a ‘microhydrodynamic’ process discussed
in Ref. [41]. The Enskog formula for D̃ overestimates the
simulation values at high density close to the freezing point.

Tab. 2. The parameters for the formula given in the Eq. (6) obtained
from a least squares fit to the MD simulation data. The fit parame-
ters for the hard sphere (‘HS’) and Lennard-Jones potential (‘LJ’)

systems are given for each transport coefficient

HS D̃ HS η̃s HS λ̃

aX −0.238321 −0.184296 −0.703623

bX −0.332723 −1.647983 −2.150955

cX −0.653124 −5.180327 −1.059641

dX −0.302959 −7.4909157 −1.288698

eX −0.183643 −2.593997× 10−9 −0.214774

fX −0.0667652 20.747125 −3.950194

LJ D̃ LJ η̃s LJ λ̃

aX −0.204316 −0.13240 −0.284728

bX −0.340595 −1.34699 −2.98120

cX −0.826568 −2.35086 −4.95168

dX −0.455079 −3.352267 −4.14386

eX −0.114637 −2.286456× 10−4 −2.13376

fX −0.188901 −9.305488 −0.52122

Tab. 3. Parameters relating to the minimum and freezing point of
η̃s and λ̃ for the hard sphere (‘HS’) and Lennard-Jones potential
(‘LJ’) systems. The quantity, xm, is the value of ρ/ρfr at the min-
imum value of the quantity in the line above. X̃fr is the value of
the transport coefficient ‘X’ at the freezing point in MU from the

generic expression in Eq. (6)

HS LJ

η̃m,s 0.634 0.578

xm 0.342 0.260

λ̃m 2.77 2.75

xm 0.263 0.265

η̃fr,s 6.80 5.00

λ̃fr 14.2 9.90

D̃fr 0.0246 0.0350
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Tab. 3 gives a list of some key quantities that were de-
rived from Fig. 1. There is a minimum in η̃s which has
a value of 0.634 at ρ/ρfr = 0.342, and these values for
λ̃ are 2.837 and 0.265, respectively. There is no minimum
(nor maximum) in D̃, ηs, λ and D. The values of the hard
sphere, η̃s, λ̃ and D̃ at the freezing density using the fit for-
mula in Eq. (6) are, 6.80, 14.2 and 0.0246, respectively.

Now we compare how the LJ model system transport co-
efficients compares with the HS fluid.

III. 2. Lennard-Jones
The extent to which the expressions given in Eq. (6) re-

produce the LJ simulation data for the transport coefficients
is investigated. The MD data for LJ ηs and D were taken
from the work of Meier [45]. The state points used are in-
dicated in Fig. 2, with each symbol on the figure indicates
a state point where a MD simulation of the TC was car-
ried out.

Fig. 2. The LJ state points on its phase diagram at which the ηs and
D MD simulation calculations were carried out. These data are
taken from Ref. [45]. The liquid-vapor binodal curve (‘LV’) and

freezing line (‘freeze’) are shown

III. 3. Shear Viscosity
Fig. 3 shows the LJ shear viscosity as a function of den-

sity along several isotherms, where both quantities are given
in LJ units. These data cover both the liquid and supercrit-
ical fluid regions, encompassing the temperature interval,
0.7 ≤ T ≤ 6.0. The LJ MD shear viscosity data extends
from quite low densities where the systems exhibit gas-like
behavior to high liquid-like densities close to the freezing
line. The global expression for η̃s given in Eq. (6) was fitted
to all of the data in that figure. When converted back to LJ
units for each state point the expression is seen in Fig. 3 to

Fig. 3. The shear viscosity, ηs, as a function of ρ for the LJ fluid in
the liquid and supercritical fluid states [45]. The continuous lines
are by least squares fitting the entire data on the figure to the ex-

pression given in Eq. (6)

Fig. 4. As for Fig. 3 except that the MD LJ ηs values (‘LJ MD’) are
scaled in macroscopic units and the density is scaled by the freezing
density for each case. The continuous lines are using given by least
squares fitting the whole HS (‘HS fit’) and LJ (‘LJ fit’) data on the
figure to the expression given in Eq. (6). The Enskog HS ηs formula
(‘Enskog’ on the figure) from Eq. (2) is also shown. The HS MD

data (‘HS MD’) are also presented [41]
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reproduce the MD viscosity values well for each isotherm,
even at temperatures in the liquid part of the LJ phase di-
agram (note that the expression in Eq. (6) is fitted on the
assumption that the whole fluid phase TC are on isodynes).
The agreement at low densities is particularly noteworthy be-
cause these state points are not in the isomorph region for
thermodynamic properties of the LJ phase diagram (i .e., at
densities less than about the critical point value of 0.316).
In that region the Pearson correlation coefficient between
the potential energy and the virial is much smaller than ca.
∼ 0.9, which means that it is not an isomorph at sub-critical
point densities [24–26].

Fig. 4 shows the same LJ quantities expressed in MU
as a function of density, applying the FDS normalization.
The whole data set is plotted. The corresponding data for the
HS system is also given. The agreement between the HS and
LJ data is generally good, both showing a minimum in η̃s
separated by two ascending regions, in the gas-like regime
of the left and in the liquid-like extreme on the right. Differ-
ences are apparent for ca. ρ/ρfr > 0.9 however, where the
HS normalized viscosities increase more rapidly than that of
the LJ. This is intuitively understandable, as near the freez-
ing point a LJ assembly of particles is able to arrange and
evolve with time cooperatively, because of the range of the
potential compared to the particle’s diameter. In contrast the
hard sphere potential is short ranged and a delta function at
r = σ (and in fact this distance defines its diameter) which
will make the HS system more prone to forming transient
‘jammed’ arrangements. This feature cannot be eliminated
by ‘scaling’ in any obvious or physically meaningful way
as this difference in behavior is a direct consequence of the
difference in the shapes of the two pair potentials.

III. 4. Self-Diffusion Coefficient
Fig. 5 presents the self-diffusion coefficient values as

a function of density, both in LJ units, for several isotherms
in the liquid and supercritical region. The same good repro-
duction as for the shear viscosity of the MD data with the
global fit function of Eq. (6) (when the MU scaled TC pre-
dicted at each state point are converted back to LJ units) is
evident. Fig. 6 shows the same data plotted in MU units,
combined with the same quantities for the hard sphere sys-
tem. Again as for η̃s, the HS and LJ sets of D̃ data when ex-
pressed in this normalized format agree very closely across
the fluid range.

III. 5. Thermal Conductivity
Thermal conductivity MD data for the LJ system is not

as extensively available as for ηs and D, and λ values from
a number of literature sources were gathered for the present
analysis. These λ data in MU units are plotted as a function
of the freezing density scaled density in Fig. 7. The different
sources of λ̃ are distinguished on the figure. Fig. 8 shows the
same data plotted in MU units as a function of ρ/ρfr, com-
pared with the corresponding HS data. Bearing in mind the
relatively limited number of data points at low density (com-
pared to the equivalent plots for ηs and D), and the some-
what larger scatter (particularly in the vicinity of the critical
point) the agreement between the key features of the HS and

Fig. 5. As for Fig. 3 except the self-diffusion coefficient, D, val-
ues as a function of ρ along several LJ liquid and supercritical fluid
states are shown [45]. The continuous lines on the figure are least
squares fits to the MD data shown on the figure using the formula

in Eq. (6)

Fig. 6. As for Fig. 4 except that the MD LJ D̃ values (‘LJ MD’) are
scaled in macroscopic units and the density is scaled by the freez-
ing density for each case. The continuous lines are using given by
least squares fitting the entire HS (‘HS fit’) and LJ (‘LJ fit’) data
on the figure to the expression given in Eq. (6). The HS MD values
(‘HS MD’) are presented [41]. The Enskog formula for the D (‘En-

skog’) from Eq. (4) are shown
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Fig. 7. The reduced thermal conductivity, λ̃, as a function of ρ/ρfr
for the LJ fluid in the liquid and supercritical fluid from various
publications. The solid lines are obtained by least squares fitting the
whole MD data on the figure to the formulas presented in Eq. (6).
This is the solid red line on the figure. Key for the sources of
λ : Ref. [46] (‘Bugel’), Ref. [47] (‘Heyes’), Ref. [45] (‘Meier’),

Ref. [48] (‘Baidakov’) and Ref. [49] (‘Nasrabad’)

Fig. 8. As for Fig. 4 except that the MD LJ λ̃ values (‘LJ MD’) as
a function of ρ/ρfr are compared with the same quantities from the
HS fluid. The continuous lines are obtained by least squares fitting
the entire HS (‘HS fit’) and LJ (‘LJ fit’) data on the figure to the ex-
pression given in Eq. (6). The Enskog HS ηs formula (‘Enskog’ on
the figure) from Eq. (3) is also shown. The HS MD data (‘HS MD’)

are also presented [44]

LJ systems is again generally quite good, as for the other
two transport coefficients. In the region of the critical point
there is enhancement of the thermal conductivity [45], which
explains the large fluctuations in the scaled thermal conduc-
tivity in the vicinity of ρ/ρfr ≃ 0.32. Just as for the corre-
sponding figure for the shear viscosity, the HS data rise more
rapidly that those from the LJ potential close to freezing, in-
dicating again that the assembly of particles formed by the
HS system is more ‘constrained’ dynamically near the freez-
ing density. The fit expression in Eq. (6) does not agree well
with the HS MD data and the Enskog formula in Eq. (3) in
the low density region because of the limited number of MD
data points there.

Tab. 3 also presents a summary of the scaled parame-
ters for the minima and freezing point parameters of the LJ
system. The minimum value of the viscosity, η̃m,s, and ther-
mal conductivity, λ̃m, are quite similar for the hard sphere
and LJ systems. The densities at which their corresponding
reduced densities reach a minimum, xm, are slightly more
different as the curves are quite flat in the region of the min-
imum, which makes its determination more sensitive to the
statistical uncertainties in the fits to the MD data. Also in this
intermediate density region it might be expected that the dif-
ferences in the shapes of the two potentials to have an effect
on precisely where the transition from gas-like to liquid-like
behavior takes place (as represented by the value of xm).

Tab. 3 also shows that at the freezing point, (i .e., where,
x = ρ/ρfr = 1), these quantities are about ∼ 30% smaller
for the LJ system. In contrast, the self-diffusion constants,
D̃ is about ∼ 40% larger for the LJ system. The trends
in these quantities are intuitively reasonable and self-
consistent, and as noted above, it might be expected that the
LJ system is more ‘fluid-like’ at the freezing point than the
hard sphere system because of the comparitively long range
nature of the LJ potential which might facilitate the collec-
tive motion of the particles compared to the HS system.

Khrapak and Khrapak also analysed the shear viscosity
and thermal conductivity of LJ, hard spheres and liquified
noble gases along certain isotherms [30–32]. The values for
the minima and freezing point in Tab. 3 are close to those
given in Ref. [33].

For the much studied LJ state point, ρ = 0.8442 and
T = 0.722 (where ρfr = 0.854) the shear viscosity and self-
diffusion coefficients in LJ units are from the fit formulas,
3.5(2) and 0.0326(1), using the generic expression given in
Eq. (6), which are at worst within 8% and 1% of the liter-
ature values [13, 14, 35]. This is a very demanding test of
the fit formula as this state point is close to the triple point,
deep in the liquid region where the attractive part of the LJ
potential is most influential.

IV. Conclusions

By plotting the transport coefficients in macroscopic
units against the density scaled by the freezing density, so-
called freezing density scaling, which is a novel aspect of
this work compared to previous literature, it has been pos-
sible to make a more informative comparison between the
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behavior of the hard sphere and Lennard-Jones systems, and
come to more definitive conclusions.

Further analysis carried out in this study leads to conclu-
sions about the possible origin of the common occurrence
of isodynes over the whole of the fluid phase diagram in
this work. The LJ transport coefficients do exhibit an iso-
morph unit collapse at low densities, but corresponding to
that of another model system, which is represented well by
hard spheres. This is because the transport coefficients are
more sensitive to the repulsive part of the potential than other
properties, especially at low densities. The insensitivity at
gas-like and intermediate densities is also because another
characteristic lengthscale becomes important for the system,
not just the particle diameter (which dominates at liquid-like
densities). The mean distance between collisions, l, which
is important in determining the transport coefficients at low
density, diverges in the low density range. The distance, l,
is an important parameter in determining the TC of gas-like
systems, and as density decreases l becomes greater than the
particle diameter and less sensitive to the details of the inter-
action between the particles (beyond the minimum in the LJ
potential in the LJ case) [40].

As is well known, the hard sphere system, like the in-
verse power potential system, exhibits isomorphs at all den-
sities which makes these simple potentials useful reference
systems for the transport coefficients of the LJ fluid across
its phase diagram. The present investigation quantifies these
parallels in more detail, and gives further insights into the
origins of these relationships between the behavior of these
closely related potential systems.
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from perfect isomorph behavior in Lennard-Jones fluids and
solids, J. Chem. Phys. 158, 134502 (2023).

[18] N. Gnan, T.B. Schrøder, U.R. Pedersen, N.P. Bailey,
J.C. Dyre, Pressure-energy correlations in liquids. IV. “Iso-
morphs” in liquid phase diagrams, J. Chem. Phys. 131,
234504 (2009).

[19] T.B. Schrøder, N. Gnan, N.P. Bailey, U.R. Pedersen,
J.C. Dyre, Pressure-energy correlations in liquids. V. Iso-
morphs in generalized Lennard-Jones systems, J. Chem.
Phys. 134, 164505 (2011).

[20] T.S. Ingebrigtsen, T.B. Schrøder, J.C. Dyre, Isomorphs in
Model Molecular Liquids, J. Phys. Chem. B 116, 1018–1034
(2012).

[21] J.C. Dyre, Hidden Scale Invariance in Condensed Matter,
J. Phys. Chem. B 118, 10007–10024 (2014).

[22] Z. Sheydaafar, Isomorphs and pseudoisomophs in molecu-
lar liquid models, PhD thesis, Roskilde University, Denmark
(2021).

[23] K. Moch, N.P. Bailey, Isomorph invariant dynamic mechani-
cal analysis: A molecular dynamics study, Phys. Rev. Mat. 6,
085602 (2022).

[24] T.S. Ingebrigtsen, L. Bøhling, T.B. Schrøder, Thermodynam-
ics of condensed matter with strong pressure energy correla-
tions, J. Chem. Phys. 136, 061102 (2012).

[25] L. Bøhling, T.S. Ingebrigtsen, A. Grzybowski, M. Paluch,
J.C. Dyre, T. B. Schrøder, Scaling of viscous dynamics in sim-
ple liquids: theory, simulation and experiment, New J. Phys.
14, 113035 (2012).

[26] N.P. Bailey, T.B. Schrøder, J.C. Dyre, Variation of the dy-
namic susceptibility along an isochrone, J. Chem. Phys. 90,
042310 (2014).

[27] S.A. Khrapak, Gas-liquid crossover in the Lennard-Jones
system, J. Chem. Phys. 156, 116101 (2022).

[28] A.J. Schultz, D.A. Kofke, Comprehensive high-precision
high-accuracy equation of state and coexistence properties
for classical Lennard-Jones crystals and low-temperature
fluid phases, J. Chem. Phys. 149, 204508 (2018).

[29] A.J. Schultz, D.A. Kofke, Erratum: ‘Comprehensive high-
precision high-accuracy equation of state and coexistence
properties for classical Lennard-Jones crystals and low tem-
perature fluid phases’, J. Chem. Phys. 153, 059901 (2020).

[30] S.A. Khrapak, A.G. Khrapak, Transport properties
of Lennard-Jones fluids: Freezing density scaling along
isotherms, Phys. Rev. E 103, 042122 (2021).



54 D.M. Heyes, S. Pieprzyk, A.C. Brańka
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