• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 25 (1) 2019, 17–29

Interval Runge-Kutta Methods with Variable Step Sizes

Marciniak A. 1,2, Szyszka Barbara 3

1 Institute of Computing Science Poznan University of Technology
Piotrowo 2, 60-965 Poznan, Poland
E-mail: andrzej.marciniak@put.poznan.pl

2 Department of Computer Science State University of Applied Sciences in Kalisz
Poznanska 201-205, 62-800 Kalisz, Poland

3 Institute of Mathematics Poznan University of Technology
Piotrowo 3A, 60-965 Poznan, Poland
E-mail: barbara.szyszka@put.poznan.pl

Received:

Received: 25 February 2019; revised: 28 March 2019; accepted: 28 March 2019; published online: 31 March 2019

DOI:   10.12921/cmst.2019.0000006

Abstract:

In a number of our previous papers we have presented interval versions of Runge-Kutta methods (explicit and implicit) in which the step size was constant. Such an approach has required to choose manually the step size in order to ensure an interval enclosure to the solution with the smallest width. In this paper we propose an algorithm for choosing automatically the step size which guarantees the best (i.e., the tiniest) interval enclosure. This step size is determined with machine accuracy.

Key words:

floating-point interval arithmetic, initial value problem, interval Runge-Kutta methods, Runge-Kutta methods, variable step size

References:

[1] Berz, M., Hoffstätter, G.: Computation and Application of Taylor Polynomials with Interval Remainder Bounds. Reliable Computing 4(1), 83–97 (1998)
[2] Berz, M., Makino, K.: Performance of Taylor Model Methods for Validated Integration of ODEs. In: J. Dongarra, K. Madsen, J. Wasniewski (eds.) Applied Parallel Computing. State of the Art in Scientific Computing, Lecture Notes in Computer Science, vol. 3732, pp. 65–73 (2005)
[3] Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. John Wiley & Sons, Chichester (1987)
[4] Corliss, G.F., Rihm, R.: Validating an A Priori Enclosure Using High-Order Taylor Series. In: Scientific Computing, Computer Arithmetic, and Validated Numerics, pp. 228–238. Akademie Verlag (1996)
[5] Enright,W.H., Pryce, J.D.: Two Fortran Packages for Assessing Initial Value Methods. ACM Transactions on Mathematical Software 13(1), 1–27 (1987)
[6] Gajda, K., Jankowska, M., Marciniak, A., Szyszka, B.: A Survey of Interval Runge-Kutta and Multistep Methods for Solving the Initial Value Problem. In: R. Wyrzykowski, J. Dongarra, K. Karczewski, J. Wasniewski (eds.) Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, vol. 4967, pp. 1361–1371. Springer-Verlag, Berlin (2007)
[7] Gajda, K., Marciniak, A., Szyszka, B.: Three-and Four-Stage Implicit Interval Methods of Runge-Kutta Type. Computational Methods in Science and Technology 6, 41–59 (2000)
[8] Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I – Nonstiff Problems. Springer–Verlag, Berlin (1987)
[9] Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified Computing I. Basic Numerical Problems, Theory, Algorithms, and Pascal-XSC Programs. Springer-Verlag, Berlin (1993)
[10] Hansen, E.R.: Topics in Interval Analysis. Oxford University Press, London (1969)
[11] Jackson, K.R., Nedialkov, N.S.: Some Recent Advances in Validated Methods for IVPs for ODEs. Applied Numerical Mathematics 42(1–3), 269–284 (2002)
[12] Jankowska, M., Marciniak, A.: Implicit Interval Methods for Solving the Initial Value Problem. Computational Methods in Science and Technology 8(1), 17–30 (2002)
[13] Jankowska, M., Marciniak, A.: On Explicit Interval Methods of Adams-Bashforth Type. Computational Methods in Science and Technology 8(2), 46–57 (2002)
[14] Jankowska, M., Marciniak, A.: On Two Families of Implicit Interval Methods of Adams-Moulton Type. Computational Methods in Science and Technology 12(2), 109–113 (2006)
[15] Kalmykov, S.A., Shokin, J.I., Juldashev, Z.H.: Solving Ordinary Differential Equations by Interval Methods [in Russian]. Doklady AN SSSR 230(6) (1976)
[16] Marciniak, A.: Implicit Interval Methods for Solving the Initial Value Problem. Numerical Algorithms 37(1–4), 241–251 (2004)
[17] Marciniak, A.: Selected Interval Methods for Solving the Initial Value Problem. Publishing House of Poznan University of Technology, Poznan (2009).  http://www.cs.put.poznan.pl/amarciniak/IMforIVPbook/IMforIVP.pdf
[18] Marciniak, A.: Interval Arithmetic Unit (2016). http://www.cs.put.poznan.pl/amarciniak/IAUnits/IntervalArithmetic32and64.pas
[19] Marciniak, A.: Delphi Pascal Programs for Step Size Control in Interval Runge-Kutta Methods (2017). http://www.cs.put.poznan.pl/amarciniak/VSSIRKMExamples
[20] Marciniak, A., Jankowska, M.A.: Interval Versions for Special Kinds of Explicit Linear Multistep Methods (in review, available from the authors)
[21] Marciniak, A., Jankowska, M.A.: Interval Versions of Milne’s Multistep Methods. Numerical Algorithms 79(1), 87–105 (2018)
[22] Marciniak, A., Jankowska, M.A., Hoffmann, T.: On Interval Predictor-Corrector Methods. Numerical Algorithms 77(3), 777–808 (2017)
[23] Marciniak, A., Szyszka, B.: One-and Two-Stage Implicit Interval Methods of Runge-Kutta Type. Computational Methods in Science and Technology 5, 53–65 (1999)
[24] Marciniak, A., Szyszka, B., Hoffmann, T.: An Interval Version of Kuntzmann-Butcher Method for Solving the Initial Value Problem (in review, available from the authors)
[25] Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
[26] Moore, R.E.: Methods and Applications of Interval Analysis. SIAM Society for Industrial & Applied Mathematics, Philadelphia (1979)
[27] Nedialkov, N.S.: VNODE-LP – a Validated Solver for Initial Value Problems in Ordinary Differential Equations, Tech. Rep. CAS 06-06-NN, Department of Computing and Software, McMaster University, Hamilton (2006)
[28] Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated Solutions of Initial Value Problems for Ordinary Differential Equations. Applied Mathematics and Computation 105(1), 21–68 (1999)
[29] Shokin, Y.I.: Interval Analysis [in Russian]. Nauka, Novosibirsk (1981)

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_24_1_2018_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST