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Abstract: In a number of our previous papers we have presented interval versions of Runge-Kutta methods (explicit and
implicit) in which the step size was constant. Such an approach has required to choose manually the step size in order
to ensure an interval enclosure to the solution with the smallest width. In this paper we propose an algorithm for choosing
automatically the step size which guarantees the best (i.e., the tiniest) interval enclosure. This step size is determined with
machine accuracy.
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I. INTRODUCTION

Interval arithmetic (see, e.g., [10, 25, 26, 29]) realized
in floating-point computer arithmetic is a way to estimate
two kinds of errors: representation errors of data (some
real numbers cannot be represented exactly in floating-point
arithmetic) and rounding errors (the difference between
the calculated approximation of a number and its exact math-
ematical value). Using approximate methods we introduce
the third kind of errors – the error of method (often called
the truncation error, usually defined as the error that results
from using an approximation in place of an exact mathemat-
ical procedure). Applying interval methods to approximate
the solution of the initial value problem in floating-point in-
terval arithmetic (see, e.g., [9]), we can obtain enclosures

of the solution in the form of intervals which contain all pos-
sible numerical errors.

Three main kinds of interval methods for solving the ini-
tial value problem are known: the methods based on high-
order Taylor series (see, e.g., [1, 2, 4, 11, 28]), explicit and
implicit methods of Runge-Kutta type [6, 7, 15, 17, 23,
24, 29], and explicit and implicit multistep methods [12–
14, 16, 17, 29]. So far, only in the first kind of interval
methods the step size correction has been applied. In inter-
val methods based on Runge-Kutta methods and in interval
multistep methods a constant step size has been used. Al-
though the methods based on high-order Taylor series seem
to be most universal, in [20–22, 24] we have shown that
in some cases the interval methods of the second and third
kind give better enclosures of solutions.
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In this paper we propose an algorithm for finding the op-
timal step size (taking into account the widths of inter-
vals obtained) for interval methods of Runge-Kutta type.
We present an application of this algorithm taking into ac-
count an interval method based on the classical Runge-Kutta
method of fourth order as an example. But the presented pro-
cedure can also be applied to other kinds of interval methods
of Runge-Kutta type.

The paper is divided into seven sections. In Sec. II.
and III. we shortly recall the well-known conventional
Runge-Kutta methods and the classical Runge-Kutta method
of fourth order, respectively. An interval version of fourth or-
der Runge-Kutta method [17, 29] is recalled in Sec. IV.. Sec.
V. is the main section of this paper, in which we describe
an algorithm for finding the optimal step size. In Sec. VI.
we present some numerical examples which show the appli-
cation of this algorithm. In the last section some conclusions
are given.

II. RUNGE-KUTTA METHODS

Let us consider the initial value problem

y′ = f(t, y(t)), y(0) = y0, (1)

where t ∈ [0, a], y ∈ R and f : [0, a] × R → R.
As it is well-known, the (explicit) m-stage Runge-Kutta
methods for solving the problem (1) are given by the for-
mula [3, 8]

yk+1 = yk + h

m∑
i=1

wiκik, k = 0, 1, . . . , (2)

where

κik = f(tk + cih, yk + h

i−1∑
j=1

aijκjk),

i = 1, 2, . . . ,m,

(3)

and

ci =

i−1∑
j=1

aij , (4)

h = tk+1 − tk is a step-size, and where the coefficients wi,
ci and aij are some parameters. It is convenient to present
these coefficients in a form of a (triangular) array, called
the Butcher table:

0
c2 a21
c3 a31 a32
...

...
...

cm am1 am2 · · · amm �

w1 w2 · · · wm

The local truncation error of step k + 1 for any Runge-
Kutta method of order p can be written in the form

rk+1 (h) = y(tk + h)−

(
y (tk) + h

m∑
i=1

wiκik(h)

)

= ψ(tk, y(tk))hp+1 +O(hp+2)

= r
(p+1)
k+1 (0)

hp+1

(p+ 1)!
+ r

(p+2)
k+1 (θh)

hp+2

(p+ 2)!
,

0 < θ < 1,

(5)

where y(tk+h) and y(tk) denote the exact solutions at tk+h
and tk, respectively, and κik(h) is given by (3) for the ex-
act value y(tk). From the conditions r(l)k+1(0) = 0 (for
l = 1, 2, ..., p) follow the equations for determining the co-
efficientswi, ci and aij . Unfortunately, there are fewer equa-
tions than the number of unknowns, and usually we con-
sider some special cases. It is known [3, 8] that for each m
there exists a method with maximum order pmax(m) = m
for m = 1, 2, 3, 4, pmax(m) = m − 1 for m = 5, 6, 7,
pmax(m) = m− 2 for m = 8, 9, and pmax(m) ≤ m− 2 for
m ≥ 10.

III. THE CLASSICAL RUNGE-KUTTA METHOD

One of the most popular Runge-Kutta methods (simply
called the Runge-Kutta method) is the four-stage fourth or-
der method of the form

yk+1 = yk +
h

6
(κ1k + 2κ2k + 2κ3k + κ4k) , (6)

where

κ1k = f (tk, yk) ,

κ2k = f

(
tk +

h

2
, yk +

h

2
κ1k

)
,

κ3k = f

(
tk +

h

2
, yk +

h

2
κ2k

)
,

κ4k = f (tk + h, yk + hκ3k) .

(7)

The Butcher table for this method is as follows:

0

1
2

1
2

1
2 0 1

2

1 0 0 1
�

1
6

2
6

2
6

1
6
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The local truncation error is given by the following formula:

rk+1(h) = ψ(tk, y(tk))h5 +O(h6).

The form of ψ(t, y) is rather complicated. Since this form
is very important from the point of view of the interval
method developed in the next section, below we present
the adequate formulas.

Denoting (to short the notations)

f = f(t, y), f
(l)
tpyq =

∂lf

∂tp∂yq
,

where l = p+ q, and

y(l) = y(l)(t), κ
(l)
i = κ

(l)
i (0), λ

(l)
i =

i−1∑
j=1

aijκ
(l)
j ,

we have

ψ(t, y) =
1

120

(
y(5) − 5

4∑
i=1

wiκ
(4)
i

)
, (8)

where

κ
(1)
i =ci

(
f
(1)
t + f (1)y f

)
,

κ
(2)
i =c2i

(
f
(2)
t2 + 2f

(2)
ty f + f

(2)
y2 f

2
)

+ 2f (1)y λ
(1)
i ,

κ
(3)
i =c3i

(
f
(3)
t3 + 3f

(3)
t2yf + 3f

(3)
ty2f

2 + f
(3)
y3 f

3
)

+ 6ci

(
f
(2)
ty + f

(2)
y2 f

)
λ
(1)
i + 3f (1)y λ

(2)
i ,

κ
(4)
i =c4i

(
f
(4)
t4 + 4f

(4)
t3yf + 6f

(4)
t2y2f

2 + 4f
(4)
ty3f

3 + f
(4)
y4 f

4
)

+ 12c2i

(
f
(3)
t2y + 2f

(3)
ty2f + f

(3)
y3 f

2
)
λ
(1)
i

+ 12ci

(
f
(2)
ty + f

(2)
y2 f

)
λ
(2)
i + 12f

(2)
y2

(
λ
(1)
i

)2
+ 4f (1)y λ

(3)
i .

The derivatives of y with respect to t can be written
in the following forms:

y(2) =f
(1)
t + f (1)y f,

y(3) =f
(2)
t2 + 2f

(2)
ty f + f

(2)
y2 f

2 + f (1)y y(2),

y(4) =f
(3)
t3 + 3f

(3)
t2yf + 3f

(3)
ty2f

2 + f
(3)
y3 f

3

+ 3
(
f
(2)
ty + f

(2)
y2 f

)
y(2) + f (1)y y(3),

y(5) =f
(4)
t4 + 4f

(4)
t3yf + 6f

(4)
t2y2f

2 + 4f
(4)
ty3f

3 + f
(4)
y4 f

4

+ 6
(
f
(3)
t2y + 2f

(3)
ty2f + f

(3)
y3 f

2
)
y(2)

+ 4
(
f
(2)
ty + f

(2)
y2 f

)
y(3) + f (1)y y(4)

+ 3f
(2)
y2

(
y(2)

)2
.

IV. AN INTERVAL VERSION
OF RUNGE-KUTTA METHOD

Let us denote:
• ∆t and ∆y – bounded sets in which the function
f (t, y), occurring in (1), is defined, i.e.,

∆t = {t ∈ R : 0 ≤ t ≤ a} ,
∆y =

{
y ∈ R : b ≤ y ≤ b

}
,

• F (T, Y ) – an interval extension of f (t, y), where
an interval extension of the function

f : R× R ⊃ ∆t ×∆y → R

we call a function

F : IR× IR ⊃ I∆t × I∆y → IR

such that

(t, y) ∈ (T, Y )⇒ f (t, y) ∈ F (T, Y ) ,

and where IR denotes the space of real intervals,
• Ψ (T, Y ) – an interval extension of ψ (t, y) (see (8)),

and let us assume that:
• the function F (T, Y ) is defined and continuous for all
T ⊂ ∆t and Y ⊂ ∆y

1,
• the function F (T, Y ) is monotonic with respect to in-

clusion, i.e.,

T1 ⊂ T2 ∧ Y1 ⊂ Y2 ⇒ F (T1, Y1) ⊂ F (T2, Y2) ,

• for each T ⊂ ∆t and for each Y ⊂ ∆y there exists
a constant Λ > 0 such that

w (F (T, Y )) ≤ Λ (w (T ) + w (Y )) , (9)

where w (A) denotes the width of the interval A,

1 The function F (T, Y ) is continuous at (T0, Y0) if for every ε > 0 there is a positive number δ = δ(ε) such that d (F (T, Y ) , F (T0, Y0)) < ε
whenever d(T, T0) < δ and d(Y, Y0) < δ. Here, d denotes the interval metric defined by d (X1, X2) = max

{
|X1 −X2| ,

∣∣X1 −X2

∣∣}, where
X1 =

[
X1, X1

]
and X2 =

[
X2, X2

]
are two intervals.
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• the function Ψ (T, Y ) is defined for all T ⊂ ∆t and
Y ⊂ ∆y ,
• the function Ψ (T, Y ) is monotonic with respect to in-

clusion.
For t0 = 0 and y0 ∈ Y0, where the interval Y0 is given,

the interval version of Runge-Kutta method is of the form
[17, 29]

Yk+1 =Yk +
h

6
(K1k + 2K2k + 2K3k +K4k)

+ (Ψ (Tk, Yk) + [−α, α])h5,

k = 0, 1, . . . , n− 1,

(10)

where

K1k = F (Tk, Yk) ,

K2k = F

(
Tk +

h

2
, Yk +

h

2
K1k

)
,

K3k = F

(
Tk +

h

2
, Yk +

h

2
K2k

)
,

K4k = F (Tk + h, Yk + hK3k) ,

α = Mh0,

∣∣∣∣∣r
(6)
k+1 (θh)

720

∣∣∣∣∣ ≤M,

0 < θ < 1, 0 < h ≤ h0,

(11)

and where h0 denotes a given number (an initial value of step
size).

According to the theory of interval Runge-Kutta methods
[17, 29], the step size h of the method (10)–(11) is given by

h =
η

n
, (12)

where

η = min {η0, η2, η3, η4} , (13)

and where for Y0 ⊂ ∆y and y0 ∈ Y0 the numbers ηi > 0
(i = 2, 3, 4) are such that

Y0 + ηiciF (∆t,∆y) ⊂ ∆y, i = 2, 3, 4,

and the number η0 > 0 fulfills the condition

Y0 + η0

4∑
i=1

wiF (∆t,∆y)

+ (Ψ (∆t,∆y) + [−α, α])h40 ⊂ ∆y.

In the above relations we have (according to the Butcher
table presented in Sec. III.) c2 = c3 = 1/2, c4 = 1, w1 =
w4 = 1/6, w2 = w3 = 1/3. In [17] we have described

a procedure which in interval floating-point arithmetic cal-
culates the number η = tmax for any interval Runge-Kutta
method (explicit or implicit).

Finally, we divide the interval [0, η] into n parts
by the points tk = kh (k = 0, 1, ..., n), whereas the inter-
vals Tk, which appear in the method (10)–(11), are selected
in such a way that

tk = kh ∈ Tk ⊂ [0, η] .

For the method (10)–(11) we have the following

Theorem 1 For the exact solution y(t) of the initial value
problem (1) we have y(tk) ∈ Yk (k = 0, 1, ..., n), where Yk
are obtained from (10)–(11).

The proof of this theorem can be found in [17, 29], where
one can also find a theorem regarding estimations of w(Yk).

Theorem 2 If Yk (k = 1, 2, ..., n) are obtained on the basis
of the method (10)–(11), then

w (Yk) ≤ Qh4 +Rw (Y0) + S max
l=0,1,...,k−1

w (Tl) , (14)

where Q,R and S denote some nonnegative constants.

The estimation (14) is true for any explicit interval
Runge-Kutta method of fourth order (not only for the method
(10)–(11)). In the case of the formulas (10)–(11) the con-
stants Q, R and S are as follows (see the proof of the theo-
rem in [17, 29]):

Q =
[
w
(
Ψ (∆t,∆y)

)
+ 2α

] S
γΛ

,

R =exp(γηΛ),

S =R− 1,

(15)

where

γ =

4∑
i=1

wi

i−1∑
j=0

µij (h0Λ)
j
,

µi0 = 1, i = 1, 2, 3, 4,

µi1 =
1

2
, i = 2, 3, 4,

µ32 =
1

4
, µ42 =

1

2
, µ43 =

1

4
,

and wherew1 = w4 = 1/6, w2 = w3 = 1/3, and Λ is a con-
stant occurring in (9).

V. CHANGING THE STEP SIZE
IN THE INTERVAL RUNGE-KUTTA METHOD

In conventional Runge-Kutta methods the step size
is changed to decrease errors of methods. In case of inter-
val methods these errors are included in interval enclosures
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of solutions. The only reason to change a given step size
for such methods is to decrease the widths of interval enclo-
sures. Since all calculations are performed in floating-point
arithmetic which produces rounding errors, for each problem
considered there is a step size decreasing of which will not
give intervals with smaller widths. A procedure for chang-
ing the step size for the method (10)–(11), described below,
is based on halving or doubling the size of a given step.

Let h ≤ h0 be a step calculated from (12), and let us de-
note by Y (h) an interval obtained from (10) for k = 0, i.e.,
at T1 (t1 = h ∈ T1). Let Y

(
2× h

2

)
be an interval obtained

at T1 by an application of (10) two times. According to (14)
we have

w (Y (h)) ≤ Qh4 +Rw (Y0) + Sw (T0) ,

w

(
Y

(
2× h

2

))
≤ Q

(
h

2

)4

+Rw

(
Y

(
h

2

))
+ Sw

(
T1/2

)
≤ Q

(
h

2

)4

+R

(
Q

(
h

2

)4

+Rw (Y0) + Sw (T0)

)
+ Sw

(
T1/2

)
≤ Q(R+ 1)

(
h

2

)4

+R2w (Y0)

+ S(R+ 1)w
(
T1/2

)
,

(16)

where we take advantage of w (T0) ≤ w
(
T1/2

)
, t1/2 = h

2 ∈
T1/2.

We should consider two cases:

w (Y (h)) ≤ w
(
Y

(
2× h

2

))
(17)

and

w

(
Y

(
2× h

2

))
< w (Y (h)) . (18)

In case of (17) we see that by halving step size we do not
obtain a better interval (i.e., with a smaller width) at T1 and
we can try to double h. In this case we substitute

Y

(
h

2

)
:= Y (h), h := 2h,

and calculate Y
(
2× h

2

)
and Y (h) for this new value of h.

If (18) occurs, then the step size h should be halved. We sub-
stitute

Y (h) := Y

(
h

2

)
, h :=

h

2
,

and find Y
(
2× h

2

)
for the new h.

Doubling h we should always keep h ≤ h0 in mind.
If we halve h, we should take into account the inequalities
(16). Adding these inequalities by sides we have

w (Y (h)) + w

(
Y

(
2× h

2

))
≤

Q(R+ 5)

4
h4 +R(R+ 1)w (Y0) + Sw (T0)

+S(R+ 1)w
(
T1/2

)
≤

Q(R+ 5)

4
h4 +R(R+ 1)w(Y0) + S(R+ 2)w

(
T1/2

)
,

from which it follows that

h4 ≥ 4

w (Y (h)) + w
(
Y
(
2× h

2

))
−R(R+ 1)w (Y0)− S(R+ 2)w

(
T1/2

)
Q(R+ 5)

. (19)

Since in a number of examples we have w (Y0) ≈ 0 and
w
(
T1/2

)
≈ 0, assuming w (Y0) = 0 and w

(
T1/2

)
= 0,

from (19) we have

h ≥
√

2 · 4

√
w (Y (h)) + w

(
Y
(
2× h

2

))
Q(R+ 5)

. (20)

Applying the presented procedure, after a number
of steps we observe that halving and doubling the step size h
do not decrease the width of interval solution at some T1,
or h > h0, or the inequalities (20) does not hold. In all
these case we accept the interval obtained with the last cor-
rect h. This procedure (presented in part A of block dia-
gram in Fig. 1) gives us only the information that the cor-
rect step size h is within the interval

[
h
2 , 2h

]
, but there can

exist a step size h such that h
2 ≤ h ≤ h or h ≤ h ≤ 2h,

for which the width of Y is smaller. With a machine ac-
curacy eps we are able to find such an h in the interval
[h, 2h] for which the width of Y is w1 (part B in Fig. 1)
and such an h′ in the interval

[
h
2 , h
]

with the width of Y
equals w′1 (part C in Fig. 1). If w1 6= w′1, we substitute
h :=

(
h+ h′

)
/2 and repeat part A with this new step size.

Otherwise (w1 = w′1), the obtained h is the optimal step size
(according to the machine accuracy and because of h ≥ h′).
It means that the width of interval Y

(
h
)

is the smallest.
The above procedure may be applied for the next inte-

gration steps, i.e., for k > 0. Since w (Yk+1) ≥ w (Yk),
which follows immediately from (10), and taking into ac-
count the expense of the described algorithm, for k > 0
we propose to use the constant step size obtained in the first
integration step, i.e., for k = 0. Although we have con-
sidered only the fourth order interval Runge-Kutta method,
the same algorithm can be applied to other interval meth-
ods of Runge-Kutta type (explicit and implicit – see, e.g.,
[6, 7, 15–17, 23, 24, 29]).
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D y

calculate and from (15)
:= width(     )

:=

Q R
w

w w
11

1122

first_time
h

w _less_w
w _less_w
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false

false
false

OK

1

1 2
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21

w     w
222#
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h := true
OK

not hOK

w w
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222

1

calculate ( ), andY h Y Y
h
2

2(       )(   )
w Y h:= width( ( ))

1

(           ):= widthw Y
h
2

2(       )2

h
2

h
2

h :=h := true
OK

first_time
w _less_w

:=
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false
true

21

not w _less_w
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w     w
111#

h := true
OK

h h:= 2

not (20)

h
2

h := true
OK

h :=

w w
w w
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11

222

1

h
2

h := true
OK

h :=

h := true
OK

w w<
21

h
21/2h :=

N
12

h h
w w

:=
:=

N

2 1

h h
h h
w w

:=
:= 2
:=

2

1 2

:=
:=

h h
w w

2

1

N
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1/2h h+

2
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:= width( ( ))
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w Y hN

w     w
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w w<
21N
N

h h:=N
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h h
w w
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N

N2 1:=w wN

h h:=

2 #| |h    h eps!

h h:=

N1 2:=w w
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N

#| |h    h eps! 1/2
N
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:= width( ( ))
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w Y h
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2h h+

2
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h + h
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2

N

B

C

A

0

$h    h0

h h
h

:=
:= trueOK

0

yes

no

Fig. 1. A block diagram for step size changing

In fact, we have presented our algorithm only for one-
dimensional initial value problems, but it can be easily ex-
tended to systems of ordinary differential equations (interval
methods of Runge-Kutta type for a system of equations have
been presented, among others, in [7], [17] and [23]). In this
case the inequalities (17) and (18) should be replaced by

N∑
i=1

wi

(
Y(i)(h)

)
≤

N∑
i=1

wi

(
Y(i)

(
2× h

2

))
and

N∑
i=1

wi

(
Y(i)

(
2× h

2

))
<

N∑
i=1

wi

(
Y(i)(h)

)
,

respectively, where N denotes the number of equations
in the system.

VI. NUMERICAL EXAMPLES

In the examples presented below we have used our own
implementation of floating-point interval arithmetic in Del-
phi Pascal. This implementation has been written in the form
of a unit called IntervalArithmetic32and64 (the current
version of this unit is presented in [18]). This unit takes ad-
vantage of the Delphi Pascal floating-point Extended type.
All programs written in Delphi Pascal for the examples pre-
sented can be found in [19]. The first two examples concern
a commonly used test problem with a known exact solu-
tion. For the third example the exact solution is unknown,
but we compare our results with those obtained by a method
based on variable order Taylor series.

VI. 1. Example 1
At first, let us consider the following simple initial value

problem:
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y′ = 0.5y, y(0) = 1, (21)

with the exact solution y = exp(0.5t). Let us assume

∆t = {t ∈ R : 0 ≤ t ≤ 10} ,
∆y = {y ∈ R : 0.9 ≤ y ≤ 149} ,

where x denotes the largest machine number less or equal
to x (similarly, by x we will denote the smallest machine
number greater or equal to x). We can find that M = 0.003,
and on the basis of (13) for h0 = 0.05 we have tmax = η ≈
1.9866. It appears that for h < h0 and for the first integra-
tion step, the algorithm presented in Fig. 1 gives the opti-
mal step size h = 7.66261590758908911E-4. This step size
is obtained regardless of whether the starting step size h is
slightly or much smaller/greater than the final step size h
(see Tab. 1–4).

Using optimal step size we obtain interval solutions pre-
sented in Tab. 5. Note that the integration step 2592 is
the last one for which t ∈ [0, tmax]. Taking h = 0.0005
and h = 0.001 at the last integration for which t ∈ [0, tmax]
we get

Y ([1.9864999999999997E+0000,

1.9865000000000001E+0000])

= [2.6999952128764781E+0000,

2.6999952128764800E+0000]

and

Y ([1.9859999999999998E+0000,

1.9860000000000001E+0000])

= [2.6993202984410782E+0000,

2.6993202984410801E+0000]

with the widths approximately equal to 1.79E-15 and
1.88E-15, respectively. Both these widths are greater than
the widths of intervals obtained with the optimal step size.
Obviously, in each case the exact solution is within the inter-
val enclosure obtained.

All calculations have been carried out on a computer
with Intel R© CoreTM i7–5500U CPU@ 2.40 GHz proces-
sor. To find the optimal step size this computer needed about
1:28 min (1 minute and 28 seconds), while all other calcula-
tions (to achieve tmax with this optimal step size, i.e., to exe-
cute 2592 integration steps) lasted 27:57 min, approximately.
�

VI. 2. Example 2
In Example 1 we have found the optimal step size only

for the first integration step, and then we have used this step
size as a constant one for further steps. Although the proce-
dure for step size changing is very expensive, it may be in-
teresting to see how the step size changes in further steps.

Thus, let us consider the same initial value problem as in Ex-
ample 1 (with the same additional data), but now let us apply
the presented algorithm in each integration step. The changes
of step size in the interval [0, tmax] are showed in Fig. 2, and
the interval enclosures obtained are presented in Tab. 6.

Fig. 2. Changes of step size during calculations

From Fig. 2 it follows that there is no regularity in step
size changes. We can only observe that the values of step
size fluctuate more for greater t, i.e., for further integration
steps. It may be interesting that the mean value of step size
on the whole integration interval [0, tmax] equals 6.28E-4,
approximately, which differs insignificantly from the op-
timal step size for the first integration step (≈ 7.66E-4).
On the other hand, comparing the results in the last lines
in Tab. 5 and 6, we see that applying the algorithm for step
size changing in each integration step brings in small profit
(taking into account the widths of intervals obtained). Ob-
viously, the calculation time is much larger in this case and
to achieve tmax (in 3162 integration steps) we need 19021:00
min, approximately, i.e., more than 13 days (compare with
1:28 + 27:57 min in Example 1). �

In Examples 1 and 2 a lot of derivatives f ltpyq (l =
p+q), which are needed to find Ψ (Tk, Yk), are equal to zero
(only f (1)y equals 0.5). In Example 3 we consider a problem
in which all these derivatives are different from zero.

VI. 3. Example 3
For the initial value problem (the problem A5 from [5],

p. 23)

y′ =
y − t
y + t

, y(0) = 4, (22)
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Tab. 1. Finding the optimal step size for initial h = 0.0006

Step Step size considered
(part of algorithm)

In interval

1 h(A) [3.00000000000000000E-0004, 1.20000000000000000E-0003]
2 h(A) [6.00000000000000000E-0004, 2.40000000000000000E-0003]

initial h = 6.0000000000000000E-0004
in [h/2, 2h] = [3.00000000000000000E-0004, 1.20000000000000000E-0003],

checking h
in [≥ h,≤ 2h] = [6.00000000000000000E-0004, 1.20000000000000000E-0003]

3 h(B) [9.00000000000000000E-0004, 1.20000000000000000E-0003]
4 h(B) [9.00000000000000000E-0004, 1.05000000000000000E-0003]

· · · · · · · · ·
62 h(B) [9.54555771447376606E-0004, 9.54555771447376607E-0004]

checking h′

in [≥ h/2,≤ h] = [3.00000000000000000E-0004, 9.54555771447376606E-0004]

63 h′(C) [3.00000000000000000E-0004, 6.27277885723688303E-0004]
64 h′(C) [4.63638942861844152E-0004, 6.27277885723688303E-0004]

· · · · · · · · ·
122 h′(C) [6.27277885723688303E-0004, 6.27277885723688303E-0004]

new h =
(
h+ h′

)
/2 = 7.90916828585532455E-0004

123 h(A) [3.95458414292766227E-0004, 1.58183365717106491E-0003]

initial h = 3.95458414292766227E-0004
in [h/2, 2h] = [1.97729207146383114E-0004, 7.90916828585532455E-0004]

checking h
in [≥ h,≤ 2h] = [3.95458414292766227E-0004, 7.90916828585532455E-0004]

124 h(B) [5.93187621439149341E-0004, 7.90916828585532455E-0004]
125 h(B) [6.92052225012340898E-0004, 7.90916828585532455E-0004]

· · · · · · · · ·
182 h(B) [7.66261590758908911E-0004, 7.66261590758908912E-0004]

checking h′

in [≥ h/2,≤ h] = [1.97729207146383114E-0004, 7.66261590758908911E-0004]

183 h′(C) [1.97729207146383114E-0004, 4.81995398952646012E-0004]
184 h′(C) [3.39862303049514563E-0004, 4.81995398952646012E-0004]

· · · · · · · · ·
242 h′(C) [4.81995398952646012E-0004, 4.81995398952646012E-0004]

w1 = w′
1 ⇒ h := h = 7.66261590758908911E-0004

let us take

∆t = {t ∈ R : 0 ≤ t ≤ 4} ,
∆y =

{
y ∈ R : 4 ≤ y ≤ 6.3

}
,

h0 = 0.01, M = 0.0537.

For these data and the method (10)–(11) we have found
tmax ≈ 1.46. Using our algorithm we get h =
8.17462272838888630E-0004 as the optimal step size for
the first integration step. Using this value as a constant step
size for next integration steps we obtain interval enclosures

presented in Tab. 7. Note that the intervals obtained are very
tiny.
Taking h = 1.46 − t1786, from the last result we can find
an interval enclosure at t = 1.46. We have

[5.0849553259401612E+0000,

5.0849553259401642E+0000]
with the width equals 2.87E-15, approximately. On the other
hand, the well-known VNODE-LP package [27] (based
on variable order Taylor series) produces

5.0849553259401[565, 699].2

2 Original output from VNODE-LP.
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Tab. 2. Finding the optimal step size for initial h = 0.0008

Step Step size considered
(part of algorithm)

In interval

1 h(A) [4.00000000000000000E-0004, 1.60000000000000000E-0003]
2 h(A) [8.00000000000000000E-0004, 3.20000000000000000E-0003]

initial h = 8.0000000000000000E-0004
in [h/2, 2h] = [4.00000000000000000E-0004, 1.60000000000000000E-0003],

checking h
in [≥ h,≤ 2h] = [8.00000000000000000E-0004, 1.60000000000000000E-0003]

3 h(B) [1.20000000000000000E-0003, 1.60000000000000000E-0003]
4 h(B) [1.20000000000000000E-0003, 1.40000000000000000E-0003]
· · · · · · · · ·
61 h(B) [1.21444277883821840E-0003, 1.21444277883821841E-0003]

checking h′

in [≥ h/2,≤ h] = [4.00000000000000000E-0004, 1.21444277883821840E-0003]

62 h′(C) [4.00000000000000000E-0004, 8.07221389419109202E-0004]
63 h′(C) [4.00000000000000000E-0004, 6.03610694709554601E-0004]
· · · · · · · · ·
121 h′(C) [6.03610694709554600E-0004, 6.03610694709554601E-0004]

new h =
(
h+ h′

)
/2 = 9.09026736773886502E-0004

122 h(A) [4.54513368386943251E-0004, 1.81805347354777300E-0003]
123 h(A) [2.27256684193471626E-0004, 9.09026736773886502E-0004]

initial h = 4.54513368386943251E-0004
in [h/2, 2h] = [2.27256684193471626E-0004, 9.09026736773886502E-0004]

checking h
in [≥ h,≤ 2h] = [4.54513368386943251E-0004, 9.09026736773886502E-0004]

124 h(B) [6.81770052580414877E-0004, 9.09026736773886502E-0004]
125 h(B) [6.81770052580414877E-0004, 7.95398394677150689E-0004]
· · · · · · · · ·
182 h(B) [7.66261590758908911E-0004, 7.66261590758908912E-0004]

checking h′

in [≥ h/2,≤ h] = [2.27256684193471626E-0004, 7.66261590758908911E-0004]

183 h′(C) [4.96759137476190268E-0004, 7.66261590758908911E-0004]
184 h′(C) [6.31510364117549590E-0004, 7.66261590758908911E-0004]
· · · · · · · · ·
241 h′(C) [7.66261590758908910E-0004, 7.66261590758908911E-0004]

w1 = w′
1 ⇒ h := h = 7.66261590758908911E-0004

The width of this interval is equal to 1.34E-14. Thus, our
method gives better enclosure, but – on the other hand –
the VNODE-LP package gives a result very quickly. �

VII. CONCLUSIONS

Until now, interval Runge-Kutta methods (explicit and
implicit) have been considered only with a constant time
step. This step size (h) has been chosen in such a way that
0 < h ≤ h0, where h0 denotes some given step size for
which the error of interval method is determined (see (10)–
(11) for details). Although from the theory of interval Runge-

Kutta methods it follows that one can use any h which fulfils
the inequalities 0 < h ≤ h0, we usually search for such an h
which guarantees that the intervals obtained have the small-
est widths. So far, the only way to find such an h has been
based on a number of trials to apply the considered interval
methods for different values of h.

In this paper we have presented an algorithm giving
the optimal step size for the next (for the first at the be-
ginning of calculations) integration step in interval Runge-
Kutta methods. The optimal step size means the step size
which gives a resulting interval with the smallest width. Al-
though our algorithm can be applied in each integration step,
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Tab. 3. Finding the optimal step size for initial h = 0.00001

Step Step size considered
(part of algorithm)

In interval

1 h(A) [5.00000000000000000E-0006, 2.00000000000000000E-0005]
2 h(A) [1.00000000000000000E-0005, 4.00000000000000000E-0005]
· · · · · · · · ·
8 h(A) [6.40000000000000000E-0004, 2.56000000000000000E-0003]

initial h = 6.4000000000000000E-0004
in [h/2, 2h] = [3.20000000000000000E-0004, 1.28000000000000000E-0003],

checking h
in [≥ h,≤ 2h] = [6.40000000000000000E-0004, 1.28000000000000000E-0003]

9 h(B) [9.60000000000000000E-0004, 1.28500000000000000E-0003]
10 h(B) [9.60000000000000000E-0004, 1.12000000000000000E-0003]
· · · · · · · · ·
67 h(B) [1.05723384520852133E-0004, 1.05723384520852134E-0004]

checking h′

in [≥ h/2,≤ h] = [4.00000000000000000E-0004, 1.21444277883821840E-0003]

68 h′(C) [3.20000000000000000E-0004, 6.88616922604260667E-0004]
69 h′(C) [5.04308461302130334E-0004, 6.88616922604260667E-0004]
· · · · · · · · ·
127 h′(C) [6.88616922604260667E-0004, 6.88616922604260667E-0004]

new h =
(
h+ h′

)
/2 = 8.72925383906391001E-0004

128 h(A) [4.36462691953195500E-0004, 1.74585076781278200E-0003]

initial h = 4.36462691953195500E-0004
in [h/2, 2h] = [2.18231345976597750E-0004, 8.72925383906391001E-0004]

checking h
in [≥ h,≤ 2h] = [4.36462691953195500E-0004, 8.72925383906391001E-0004]

129 h(B) [6.54694037929793251E-0004, 8.72925383906391001E-0004]
130 h(B) [7.63809710918092126E-0004, 8.72925383906391001E-0004]
· · · · · · · · ·
187 h(B) [7.66261590758908911E-0004, 7.66261590758908912E-0004]

checking h′

in [≥ h/2,≤ h] = [2.18231345976597750E-0004, 7.66261590758908911E-0004]

188 h′(C) [2.18231345976597750E-0004, 4.92246468367753331E-0004]
189 h′(C) [3.55238907172175540E-0004, 4.92246468367753331E-0004]

· · · · · · · · ·
246 h′(C) [4.92246468367753330E-0004, 4.92246468367753331E-0004]

w1 = w′
1 ⇒ h := h = 7.66261590758908911E-0004

due to its complexity (see Example 2) we recommend using
the algorithm only for the first integration step and then tak-
ing the obtained h as a constant step size for each succeeding
steps.

In the examples presented in this paper we have ap-
plied our algorithm to an interval version of classical Runge-
Kutta method of fourth order. However, there is no restric-
tion to apply the presented procedure to other kinds of in-
terval methods of Runge-Kutta type (explicit and implicit –
see, e.g., [16, 17, 23, 24, 29]). It should also be noted that
although interval methods based on high-order Taylor se-

ries are commonly considered as most universal, sometimes
other interval methods (not only of Runge-Kutta type) give
better enclosures of the exact solutions (see examples pre-
sented in [20–22, 24] and Example 3). This is the main rea-
son to consider also possibilities of applying such methods
for solving various initial value problems.
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Tab. 4. Finding the optimal step size for initial h = 0.01

Step Step size considered
(part of algorithm)

In interval

1 h(A) [5.00000000000000000E-0003, 2.00000000000000000E-0002]
2 h(A) [2.50000000000000000E-0003, 1.00000000000000000E-0002]
· · · · · · · · ·
5 h(A) [3.12500000000000000E-0004, 1.25000000000000000E-0003]

initial h = 6.25000000000000000E-0004
in [h/2, 2h] = [3.12500000000000000E-0004, 1.25000000000000000E-0003],

checking h

in [≥ h,≤ 2h] = [6.25000000000000000E-0004, 1.25000000000000000E-0003]

6 h(B) [6.25000000000000000E-0004, 9.37500000000000000E-0004]
7 h(B) [6.25000000000000000E-0004, 7.81250000000000000E-0004]
· · · · · · · · ·
65 h(B) [7.66261590758908911E-0004, 7.66261590758908912E-0004]

checking h′

in [≥ h/2,≤ h] = [3.12500000000000000E-0004, 7.66261590758908911E-0004]

66 h′(C) [5.39380795379454456E-0004, 7.66261590758908911E-0004]
67 h′(C) [6.52821193069181683E-0004, 7.66261590758908911E-0004]
· · · · · · · · ·
124 h′(C) [7.66261590758908910E-0004, 7.66261590758908911E-0004]

w1 = w′
1 ⇒ h := h = 7.66261590758908911E-0004

Tab. 5. The interval enclosures to the solution of (21) obtained with the optimal step size for the first integration step

Step Y Width Exact solution

500 [1.2111440365720224E+0000,

1.2111440365720227E+0000]

≈ 1.78E-16 1.2111440365720225E+0000

1000 [1.4668698773229724E+0000,

1.4668698773239729E+0000]

≈ 3.96E-16 1.4668698773239726E+0000

1500 [1.7765907043480633E+0000,

1.7765907043480640E+0000]

≈ 6.59E-16 1.7765907043480636E+0000

2000 [2.1517072370004459E+0000,

2.1517072370004470E+0000]

≈ 9.98E-16 2.1517072370004464E+0000

2500 [2.6060273885419534E+0000,

2.6060273885419549E+0000]

≈ 1.45E-15 2.6060273885419541E+0000

2592 [2.6995228134287445E+0000,

2.6995228134287462E+0000]

≈ 1.57E-15 2.6995228134287453E+0000
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