• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 28 (1) 2022, 11–25

Fundamental Solutions in the Theory of Micromorphic Thermoelastic Diffusion Materials with Microtemperatures and Microconcentrations

Kansal Tarun

Markanda National College
Department of Mathematics
Shahabad Markanda, 136135, India

E-mail: tarun1_kansal@yahoo.co.in

Received:

Received: 17 November 2021; revised: 29 December 2021; accepted: 22 January 2022; published online: 3 February 2022

DOI:   10.12921/cmst.2021.0000029

Abstract:

The main purpose of this paper is to construct the fundamental solutions of a system of equations of isotropic micromorphic thermoelastic diffusion materials with microtemperatures and microconcentrations in case of steady oscillations in terms of elementary functions. In a particular case, the fundamental solutions of the system of equations of equilibrium theory of isotropic micromorphic thermoelastic diffusion materials with microtemperatures and microconcentrations are also established.

Key words:

diffusion, microconcentrations, microstretch, microtemperatures, thermoelasticity

References:

[1] W. Nowacki, Dynamical problems of thermodiffusion in solids – I, Bull. Pol. Acad. Sci. Tech. Sci. 22, 55–64 (1974).

[2] W. Nowacki, Dynamical problems of thermodiffusion in solids – II, Bull. Pol. Acad. Sci. Tech. Sci. 22, 205–211 (1974).

[3] W. Nowacki, Dynamical problems of thermodiffusion in solids – III, Bull. Pol. Acad. Sci. Tech. Sci. 22, 257–266 (1974).

[4] W. Nowacki, Dynamical problems of thermodiffusion in solids, Eng. Fract. Mech. 8, 261–266 (1976).

[5] H.H. Sherief, F.A. Hamza, H.A. Saleh, The theory of generalized thermoelastic diffusion, Int. J. Eng. Sci. 42, 591–608 (2004).

[6] M. Aouadi, Generalized theory of thermoelastic diffusion for anisotropic media, J. Therm. Stresses 31, 270–285 (2008).

[7] T. Kansal, R. Kumar, Variational Principle, Uniqueness and Reciprocity theorems in the theory of generalized thermoelastic diffusion material, QScience Connect 2013, 1–18 (2013).

[8] R.A. Grot, Thermodynamics of a continuum with microstructure, Int. J. Eng. Sci. 7, 801–814 (1969).

[9] D. Iesan, R. Quintanilla, On a theory of thermoelasticity with microtemperatures, J. Therm. Stresses 23, 199–215 (2000).

[10] D. Iesan, On a theory of micromorphic elastic solids with microtemperatures, J. Therm. Stresses 24, 737–752 (2001).

[11] D. Iesan, Thermoelasticity of bodies  with  microstructure and microtemperatures, Int. J. Solids Struct. 44, 8648–8662 (2007).

[12]  M. Svanadze, Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures, J. Therm. Stresses 27, 151–170 (2004).

[13] M. Svanadze, Fundamental solution in the theory of micromorphic elastic solids with microtemperatures, J. Therm. Stresses 27, 345–366 (2004).

[14] M. Aouadi, M. Ciarletta, V. Tibullo, A thermoelastic diffusion theory with microtemperatures and microconcentrations, J. Therm. Stresses 40, 486–501 (2017).

[15] A. Chirila, M. Marin, Diffusion in microstretch thermoelasticity with microtemperatures and microconcentrations, [In:] Models and Theories in Social Systems, 149–164 (2019).

[16] A.C. Eringen, Theory of thermo-microstretch elastic solids, Int. J. Eng. Sci. 28, 1291–1301 (1990).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST