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Abstract: The main purpose of this paper is to construct the fundamental solutions of a system of equations of isotropic mi-
cromorphic thermoelastic diffusion materials with microtemperatures and microconcentrations in case of steady oscillations
in terms of elementary functions. In a particular case, the fundamental solutions of the system of equations of equilibrium
theory of isotropic micromorphic thermoelastic diffusion materials with microtemperatures and microconcentrations are

also established.
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1. Introduction

Diffusion is defined as the mass transfer of a substance
from high concentration regions to low concentration re-
gions. Various authors [1-7] have established different theo-
ries of thermoelastic diffusion to describe the coupled me-
chanical behavior among temperature, concentration, and
strain fields in elastic solids.

The theory of thermodynamics of elastic bodies with mi-
crostructure was extended by Grot [8] with the assumption
that the microelements have different temperatures. He mod-
ified Clausius-Duhem inequality to include microtempera-
tures and added first-order moment of energy equations to
the basic balance laws for determining the microtempera-
tures of a continuum. Iesan and Quintanilla [9] constructed
a linear theory for elastic materials with inner structure
whose particles, in addition to the classical displacement and
temperature fields, possess microtemperatures. They proved
an existence theorem for initial boundary value problems
via the semigroup theory and established the continuous de-

pendence of solutions of the initial data and body loads.
The field equations of a theory of microstretch thermoe-
lastic bodies with microtemperatures were established by
Iesan [10]. He proved a uniqueness theorem in the dynamic
theory of anisotropic materials. Iesan [11] derived a linear
theory of microstretch elastic solids with microtemperatures
in which a microelement of a continuum is equipped with
the mechanical degrees of freedom for rigid rotations and
microdilatation in addition to the classical translation de-
grees of freedom. He also presented uniqueness and contin-
uous dependence results. Svandaze [12, 13] constructed fun-
damental solutions in the theories of thermoelasticity with
microtemperatures and micromorphic elastic solids with mi-
crotemperatures, respectively. Aouadi et al. [14] developed
the nonlinear theory of thermoelastic diffusion materials
with microtemperatures and microconcentrations. They also
obtained a linear theory of thermoelastic diffusion materi-
als with microtemperatures and microconcentrations. They
proved the well-posedness of the linear anisotropic problem
with the help of the semigroup theory of linear operators
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and studied the asymptotic behavior of the solutions. Chirila
and Marin [15] derived the field equations and consecutive
equations of the linear theory of microstretch thermoelastic-
ity for materials whose particles have microelements that are
equipped with microtemperatures and microconcentrations.

The constitutive relations, field equations for isotropic
micromorphic thermoelastic diffusion materials with mi-
crotemperatures and microconcentrations are established in
Sec. 2. In Sec. 3, the system of linearized equations of steady
oscillations and equilibrium in the theory of micromorphic
thermoelastic diffusion solids with microtemperatures and
microconcentrations are obtained. In Sec. 4, in terms of ele-
mentary functions, the fundamental solution of basic govern-
ing equations in case of steady oscillations are constructed.
Some basic properties of the fundamental matrix in case of
steady oscillations are discussed in Sec. 5. In Sec. 6, the fun-
damental solution of basic governing equations in case of
equilibrium are constructed.

II. Basic Equations

We assume that the body occupies at time ¢y the bounded
regular region B of three-dimensional space. We confine our
attention to the linear theory of elastic bodies. The balance
of linear momentum can be written in the form

tiig + pfi = pii; , (D

where t;; are the components of stress tensor, u; are the com-
ponents of displacement vector u, p is the reference mass
density, and f; is the body force.

The balance of first stress moments is given by

Mypijp +tii — Sji + plij = 645 , ()

where m,,;; are the components of first stress moment ten-
sor, s;; are the components of microstress tensor, ;; are the
components of inertial spin tensor, and I;; is the first body
moment density.

Let € denote the internal energy density and let €;, £2; de-
note the first moments of energy vector and mass diffusion
respectively. Then the balance of energy, the balance of the
first moment of energy and mass diffusion are respectively
given by

pé = tijitj i + (8ij — ti)ji + Mpijbijp + Gii + 0, (3)
PEi = Qi+ qi — S + pM; 4)

P = ji + 1 — 0 - &)

Here g;;,n;; are the first moment of heat flux and mass dif-
fusion flux tensors, respectively, ¢; is the microheat flux av-
erage, o; is the micromass diffusion flux average, ¢; are the
components of heat flux vector , n; are the components of

mass diffusion flux vector, 7 is the heat supply, M; is the
first heat source moment vector, and ¢;; are the components
of microdeformation tensor.

The local form of the principle of entropy can be express-
ed as

. 1 1 Pn, P

pS — (qp + ngTg> + < + Tg"m) +
T T » T T (6

1
—— M;T;) >0,

TP+ ) =
where S is the entropy density, 7" is the absolute temperature,
and 7; is the microtemperature vector.

The local form of the mass concentration law is

ni; = C, 7

where C is the concentration of diffusion material. For each
micro element, the mass conservation law becomes

C=(ng+ Cpngp),g g ®)

where C), is the microconcentartion vector.
The spin inertia is given by

045 = ﬁgjéip(bpg ) )

where 71, is the microinertia tensor.

Eringen [16] introduced a special kind of micromorphic
solids called microstretch solids. In this case, for all motions,
we have

Gij = $ij, mijq = %hiéjga Nij = %T/%', lij = 5 Ldij
) (10)
where ¢ is the dilatation function, h; is the microstress vec-
tor, L is the generalized external body load, and 7/ is a given
constant.
Egs. (2), (3) and (9) become

hii—s—+pL=1"¢, (11)
pé = tijéi; + hid i+ sb+ qii + pn, (12)
oij =19, (13)

where s = s;; — t;; is the intrinsic body load, and e;; =

= 1(ui,j + u;;) are the components of strain tensor.

From Egs. (4)—(6), (8), (12), we get
. .. 1
pST — pé+tijéij + s¢ + hid i + TT’Lq'L —pe&i i+
~ 1 1
+(qi — )i + fquT,pTg — dpgTyp — TPnPTPJ'_

s

T
+n5i,;Ci + (nj — 0;)Cj — pCikY; > 0.

. P
+P,np, + PC — PCﬂ]jiJ' — PC@jUji + T<T7;77j1'> +
2J

(14)
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If we introduce function 1) by
Y =e+Tie; + CiQ; = T'S,
then, the relation (14) becomes

—plp + TS — Tie; —

s)

ClQZ] + tijéij + qu.H-
L. 1
+hi¢ i + ?T,i%' + (i —
1
+fqz>gT,pTg — dpgTyp —

+Pynp + PC — PCinyjij — PCijmji+

P
+T<TTi77ji>

Function 9 can be expressed in terms of independent vari-
ables €ij, d), ¢,i; T, Ti, Ti, ﬂ_’j,C, Cyi, 01 and Ci,j' There-
fore, we have

'fi)TmL

1
anpT,er (16)

+ ;i Ci + (0 —
3

O'j)Cj Z 0.

- 81/} o O aw MOV
Y=+ ¢¢+8¢z a1, it o it
aiﬁ o ., O - 3¢ oY
8T”T” ac” Tac, T ac C+ac,jc’j'
a7

Eq. (16) with the help of Eq. (17) becomes

0 0 0
|:tij—p81'p4:|éij+p|:9 aé/):|c —|—p|:8l a,}p:|T+

o rele [ e ool + g+

BUET LTS aT
+{P SZ}C— ;;{;T paaTzf}JT paacz,/) Cit
8%1/) Ciyj + lTﬂ"]i + (¢ — )T + qug:inﬁ
—pgTg.p — TPin + Ppnp — PCinji.j — PCi jnjit
+T<1;Ti77ji) ) + 150, Ci + (1j — 95)C; = 0.
’ (18)

The inequality should be convinced for all rates
ew,gzﬁ gbl,T TZ,TZ,T”,C’ C’Z,C and C” Hence the co-
efficients of the above variables must vanish, that is

o= p g 00 0 O
5= P Bey; ac, " T ar " Pag "
ey o 2 19
TP, T Tart ~Pac
oY oY oY oy
= = = = 2
8T,Z 0, 8Ti7j 0 5‘0,1 0 8C’i,j 0, ( 0
T:q + T(Qi - fi)Tz' + CngT,pTg - T‘ngTg,p = Pn,T p+

P
+TP 0, — TPCinjij — TPCi jnji +T° (TTmJ‘z) +
J
+Tn;i,;Ci + T(nj — 0;)Cj > 0.
(21)

Let us introduce the notation

0=T-—T, (22)

where Ty is the reference temperature of the body chosen
such that \T%| < L

In the linear theory of materials possessing a centre of
symmetry, we can take ) in the form

2p¢ = cigpeijep + 2a;5€50 + 2b;je,;C + 2 fijeijo+
+A;ij¢.i¢.5 +9° — 2n0¢ — 20CH — 2d;;6 T+
—219”¢ch — 2wlC — CkijTi/Tj — ﬁl]clcj—’_
pC’E92

—2EijTiCj + X02 —
Ty

(23)
From Eq. (19), it follows that

tij = Cijpiept + aijf + bi;C + fi;0,

hi = Aij; — diT; —05C; |
Crf
pS = 7a7;j6ij +n¢+ prE +’WC,
(24)
pei = —dji¢ ; — ;T — EyCj
P= bijeij - I/¢ — wb + XC,
s = fijeij —nb —vC + 99,
Qi = =80 — EjiTj — Vi, -
The linear expressions for q;, q;;, S, 75, 04, 7; are
4 = kij0; + rijTy
Gij = ~MijpgLgp »
Gi = (kij — Kij)0j + (rij — Li)Tj .
Nij = —NijpgCop »
0i = (hij — Hij)Pj + (hij — Hi;)Cj ,
n; = hi;Pj+hi;Cj .
The linearlized form of Eq. (6) is
PToS = gii - (26)

In view of Egs. (13), (24) and (25), Egs. (1), (4), (5), (7), (11)
and (26) become

Cijpiept,j + aijbj +bi;C 5 + fij¢ 5 + pfi = piis
—djid,j=ij Tj=Eij Cj+mipg Tg,pj=Kij0 j+Lij Tj+pMi,
—BijCi=E;jiCj = Vi 5 + njipgCy pj = Hij P j+HiCj,

pCg
To[ a”e” + Tld) + TOG + C] = kwe’ij + HijTj,i ;
hij [bijeij — l/gb — wb + XC} ,ji + iLijCj,i = O,
Aij¢,ij *dijTj,i*ﬂijCj,i*fijeij +n9+l/0719¢+pii7’/¢
(27)
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In case of an isotropic and homogeneous material, the con-

secutive equations become
tij = Neudij + 2peij — B100;; — B2Cdi; +bddij
pS = Brey + %9+w0+n¢7
P=—pren—wld+xC—vo,
pei = —c1T; — k1Cs — 00,

P = —mCy — ki Ty —wo,;
G =(k—Fks3)0;+ (k1 — k)15,

Qij = —kaT1 165 — ks T j — keTji (28)
0; = (h—h3)P; + (h1 — ha)Cy
Nij = —haClidi; — hsCi; — heCl;
hi=7v¢:—oTi—wCi,
s=bey—nl—vC+99,
¢ =kb,; + kT,
ni =hP; +hC;,
where
Cijpt = A0ijOpl + 10ip0j1 + poitdjp, aij = — P10y,
bij = —P20ij,dij = 00, Eij = K105, 0 = €104,
fij = bbij, ¥ij = wiij, Bij = madij, Aij = 7035,
kij = kdij, kij = k16s5, Lij = ko0ij, Kij = k3dij, (29)
Mijpi = kadijOpi + kedipdji + k50:10p,
hij = héij, hij = hi6ij, Hij = haij, Hij = hsbij,
Nijpi = R4 + hedipdji + hs6i10p.
Here A, i, B1, B2, 0, c1, K1, b, w, m1, v, k, k1, ..., ke, h,

h1, ..., hg are material constants.

Therefore, from equation (27) we obtain the govern-
ing equations for homogeneous isotropic micromorphic ther-
moelastic diffusion solid with microtemperatures and micro-
concentrations in the absence of heat, mass diffusion sources
and loads as:

uAu+ (A + p) grad divu — Sy grad 0+
—B2grad C' + bgrad ¢ = p1,

ke Av + (k4 + ks) grad divv — kav — k3 grad 0 =
=V + kW + pograd ¢,
he Aw + (hg + hs) grad divw — haw — hg grad P =
= K1V + mw + w grad (b,

B1To div i+ pCpl + wTyC +nTy ¢ =
=kAO+kidivv,
hA[-Bydivu— w8+ xC — v ¢+ hidivw = C,
—bdivu — podivv —wdivw +nf + v C+

+(7A - 19)¢ = 7_/(757
(30)

where A is Laplacian operator, v = (T3,7%,75) and w =
= (C1,C4,Cs)

In the upcoming sections, the chemical potential has
been used as a state variable rather than concentration.
Therefore, the system of equations (30) with the help of
Eq. (28)3 becomes

[uA + (Mo + p) grad divju — pa — 1 grad 0+
—vs grad P 4+ 3 grad ¢ = 0,
ke Av + (k4 + ks) graddivv — kov — ks grad 6 =
=1V + kW + pgrad ¢,
heAw + (hy + hy) graddivw — how — hg grad P =
= K1V +m1w + wgrad qi),
—Todiva+ ky divv + kA0 — ¢TIy 6+
—KkTyP — BTy =0,
—ypdivi 4 hydivw — k0 + hAP —mP —a¢ =0,
—v3divu — gdivv —wdivw 4+ 86 + a P+

+(7A - U)¢ = T/(éé7
(3D
where

1
m:7,I§l:mw,Oé:l/m,’)q:ﬁl—FﬂQH,’YQ:,BQm,

C
)\0:>\—ﬁ2’¥2,’73:b—5204,02pTTE—Hﬂ/%

b=n4+wa, v=19—va.

III. Steady Oscillations

The displacement vector, microtemperature, microcon-
centration, temperature change, chemical potential and mi-
crostretch functions are assumed as:

{u(x,t),v(x,t),w(x, t),0(x,t), P(x,t), p(x, t)] =

= Re {(u*,v*,w*,9*,P*,¢*)6_“"t ;

(32)
where w is oscillation frequency.
Using Eq. (32) in the system of equations (31) and omit-
ting asterisk (*) for simplicity, the system of equations of
steady oscillations are obtained as

(A + (Mo + p) grad div + pw?u — 71 grad H+
—y2 grad P + vz grad ¢ = 0,

[k6 A + (k4 + ks) grad div — kg + wweq v + twriw+
—ks grad 0 + wpgrad ¢ = 0,
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twk1V + [heA + (hy + hs) grad div — hg 4+ wmqw+ —vyzdivu—pdivv —wdivw + 60 + a P+ (33)
—hzgrad P + wwwgrad ¢ = 0, +(YA — v+ 7'w?)$ = 0.

We introduce the second order matrix differential operators
with constant coefficients

F(Dx) = (ng(Dx)) ;

12x12

wyrTodiva + ky divv + [k A+
+uwwcTp)0 + wrTo P 4+ wfTy ¢ =0,

wya divu + hy divw + wr 6 + [h A+
+wwm]P 4+ wa ¢ =0,

where
2
Fpg(Dx) = [pA + pw®]0pq + (Ao + M) o B Oy’ Fpiq+3(Dx) = Fpis,4(Dx) =0,
Fyrat6(D) = Fyic:q(Dx) = 0, Fpro D) = —maﬁ,Fpﬂl(Dx) -

Zp ox,’
Fpa2(Dx) = ’Ysi7 Fyt3,0+3(Dx) = [k A — k2 + wei]dpg + (ks + ks) il ,
oz, 0x,01,

Fpi3:9+6(Dx) = Fpi6:9+3(Dx) = twk1dpg, Fpt3,10(Dx) = —ks 8?6,,
Pyt (D) = Fripes(Da) = 0. Fye1a(Ds) = g
62
Fpi6.9+6(Dx) = [h¢A — ho + twmq]dpq + (hy + hs )axpaxq, (34)

0
+6 12(D ) = ww—-—,

3
Fpi6:10(Dx) = Fiop+6(Dx) = 0, Fpi6;11(Dx) = —hs — 9
P

Ozp
0

9 F10 10( ) =kA + LwCTo,Flo 11(D ) LCUKTQ,
q

0
FlO;q(Dx) = Lw’YlTOa F101q4‘3( ) = k15—
q

0 0
Fi0.12(Dx) = wpTy, Fi1,g = wy2 - ,Fi1,046(Dy) = hla s Fii;10(Dy) = wrk,
Lq Lq

D m 0
Fi1.11(Dx) = hA + wm, Fi1.12(Dx) = wa, Fia.,,(Dx) = — 37
9 d
Fi,413(Dx) = _QT%7F12;q+6(Dx) = —wT%»

Fi2.10(Dx) = B3, Fi2.11(Dx) = o, Fi2.12(Dx) = YA — v+ 7'w? p,g = 1,2, 3,

and F12;12( x) =74, Fp g+3(Dx) = Fp;q+6(Dx) =
= Fpy (Dx) = Fp+6;q(DX) =0,
FDw) = (FaDa) gD Fy g 15(Da) o (D)= Fe (D) 0.
i o (Dy) =05 p,g=1,2,3; e,r=10,11,12;
where e#r;i=1,...,9. 55
- 2 The system of equations (33) can be represented as
Fyg(Dx) = pAdpg + (Ao + N)Wv
TpUlq F(Dx)U(x) =0, (36)
~ 62
Fpi3q43(Dx) = kgAdpg + (ks + ks) Oz where U = (u,v,w,0, P, ¢)~is a twelve-component vector
b ) ? function on E3. The matrix F(D,) is called the principal
Fyi6:016(Dx) = heAdpg + (hy + h5)8x 5 part of operator F(Dy).
p9Tq

Definition 1. The operator F(Dy) is said to be elliptic if
Fiono(Dx) = KA, Fiain (Dx) = ha, [ (R)| # 0, where kb = (i1, 2, ).
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Since [F(k)| = u2Mkckskzhhehay|k|2%, X = Xo + 24,
k7 = ky + ks + ks, hy = hg + hs + hg. Therefore, op-
erator F'(Dy) is an elliptic differential operator iff

pMkkgkrhhghzy # 0. (37)
Definition 2. The fundamental solutions of the system of
equations (33) (the fundamental matrix of operator F') is the

(G gl (x)) satisfying condition

12x12

matrix G(x) =

F(Dx)G(x) = d(x) I(x), (38)

where §(x) is the Dirac delta, I = (dg;)12x12 is the unit
matrix and x € E3.

IV. Construction of G(x)
in Terms of Elementary Functions

Let us consider the system of non-homogeneous equa-
tions

A + (Ng + p) grad div + pw?Ju + woy1 Ty grad 0+
+iwyg grad P — y3 grad ¢ = H,

[k A + (k4 + ks5) grad div + ks]v + wwkriw + ky grad 0+
—ograd¢ =V,

twk1Vv+[he A+ (hg+hs) grad div+hg|w—+hy grad P+
—wgradp =W,

—v1 divu—k3 div v+[k A+weTy|0+ws P+ ¢p=Z,

—vo divu—hg div wHwsTy 0+ [h A+wm]P+a =X,

y3divu + wwodivv + wwdivw + wfB Ty 0 + wwa P+
(39)
where ks = 7]{72 + Lwcl,hg = 7}12 -+ mel,C = T,w2+
—v,H, V,' W are three-component vector functions on E3;
Z and X are scalar functions on E3.
The system of equations (39) may also be written in the
form
F'"(D,)U(x) = Q(x), (40)
where F!" is the transpose of matrix F, Q = (H,V, W,
Z,X,Y)and x € E3.
Applying operator div to the Egs. (39);—3, we obtain

[AA+pw?] div u+iwys ToAb+wwy AP — 43 A ¢p=div H,
(41)

(k7A + kg) div v + wry divw + k1A — p A p=divV,
(42)

wky divv+ (hs A+ hg) divw +hi AP —w A ¢p=divW.

43)
The Egs. (39)4_¢ and (41)—(43) may be expressed in the
form

N = (@) -

6x6
A + pw? 0 0
0 k7A + kg LWRK1
o 0 LWk h7 /A + hg
-M —ks3 0
—2 0 —h3
o) wo W w

N(A)S =Q, (44)
where S = (divu,divv,divw,0,P,¢), Q = (w1,...,
wg) = (divH, divV,divW, Z, X,Y) and
w1 ToA wy2 A —73A

IflA 0 7QA
0 hlA —wA
kA + wcTy WK B “3)
wrTh hA + wm «
wB Ty o ~yA + ¢

6Xx6

The Egs. (39)4—¢ and (41)—(43) may also be written as

[(A)S =7, (46)
where
1 6
U= (Uy,...,0), 0, = e ZN;;,wZ—,
i=1 47)
1 -
[ (A)=—|N(A)|, M* =Xkkshh7y, p=1,...,6,

and N}, is the cofactor of element N;;, of matrix N. From
Egs. (45) and (47), we see that

6
T (A) =Ja+A)),

i=1

where \?, i = 1,...,6 are the roots of the equation
'y (=€) = 0 (with respect to £).
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Applying operator I'1 (A) to the Eq. (39);, we get

T (A A+ N u =¥, (48)
where
2
1
Ne= B0 = T (A - grad (Mo + )W+

w1 ToVy + wya ¥y — '73\116] .

Multiplying Egs. (39)2 and (39)3 by heA + hg and wky,
respectively, we obtain

(heA + hg)[k@A + (]{74 + ks) grad div + kg]V + (heA+
+hg)iwriw = (heA + hg)[V — k1 grad 6 + pgrad ¢],
(49)
and
(twk1)?*v 4+ wki[hgA + (hg + hs )grad div + hglw =
= wk1[W — hy grad P + w grad ¢].
(50)
Using Eq. (50) in (49), we obtain

[(heA + hg)(keA + kg) — (wk1)?]v = wky (ha+

+hs) grad div w+(hg A+hg) [V —k; grad 6+ grad ¢+

—(ka+ks) grad div v]—wwrk1 [W —h; grad P+w grad ¢].
(51)
Applying operator I'; (A) to the Eq. (51) and using Eq. (46),
we get

I (AT (A)v = v (52)
where
N 1 kGA —+ kg WK1 *
Fz(A) B N* LWK1 hGA + hg ,N N kGhG ’
and
1
o — focs [(thJrhg)[Fl(A)Vkl grad¥,+pgradUes+

—(kyg + ks5) grad U] — wry [T1(A)W — hy grad U5+

+w grad Ug — (hy + hs) grad \113}] )

(53)
It can be seen that

D2(A) = (A +A3)(A +29),

where A2, \3 are the roots of the equation I'y(—¢) = 0 (with
respect to &).

Multiplying Egs. (39)2 and (39)3 by wwk; and kg A+ ks,
respectively, we obtain

(wkr)[ke A + (kg + ks) grad div + kg]v + (wwr1)?w =

= (wk1)[V — k1 grad 0 + pgrad ¢),
(54

and
(mel)(kGA + kg)V + (k)gA + kg)[h6A+
+(hg + hs )grad div + hglw =
= (keA + ks)[W — hy grad P + w grad ¢].

(55)

Using Eq. (54) in (55), we obtain

[(h6A + hg)(k‘GA + kg) — (Lwlil)Q}W =
= wky (ks + ks5) grad div v + (kgA + Kg) X
X[W — hy grad P + wgrad ¢ — (hy + hs) grad div w]+

—wr1[V — k1 grad 6 + pgrad ¢].
(56)
Applying operator I'; (A) to the Eq. (56) and using Eq. (46),
we get

[ (AT (A)w =¥, (57)
where
v = N (k6 A + ks)[I'1 (A)W — hy grad W5+
+wgrad ¥s — (ha + hs) grad Us]+ 58)
—wrk1[T1(A)V — ky grad Uy + g grad Ug+
—(kg + ks) grad ¥ol|.

From Egs. (46), (48), (52) and (57), we obtain

O(A)U(x) = ¥(x), (59)

where O = (¥, ®" ®" U, W5 Ug) and

Opp(A) =T1(A) (A +23) = [J(A + D),
Opt3;p+3(A) = Opiepr6(A) = T'1(A)2(A) =
9

= I @+x),

i=1,i£7

6
Oprapro(A) =T1(A) = [T(A +47), ©4(2) =0,

=1
p=12394q=1,...,12; g #q.

The Eqgs. (47), (48), (53) and (58) can be rewritten in the
form
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6
o = i [PI(A)J +wq1(A) grad div} H+ Z w;1 (A) grad w;
=2

1
o — [N*(hGA + hg)T'1 (A)J + wez(A) grad div] V + wia(A) grad div H + wye (A) grad Z+

1
+ws2(A) grad X + wea(A) grad Y + [ — WMMIH (A)J + ws2(A) grad div} W

(60)
o — {N*(kﬁA + kg)T1(A)T + wss(A) grad div} W + wi3(A) grad div H + wy3(A) grad Z+

1
+wsz(A) grad X + wes(A) gradY + [ G —wr1 1 (A)T + was(A) grad div] V,

U, = wip(A) divH + wop(A) div' V + w3, (A) div W 4wy, (A) Z+
Fwsp(A) X 4+ wep(A)Y; p=4,5,6,

where J = (d,41,)3x3 is the unit matrix.
In the Eqgs. (60), the following notations have been used:

1 * * * *
wn(8) = =7 [ + INA) + o TaNa(A) + ornN3s() ~ raVin()|

M*N* |: hGA + hg k4 + k5) + k’lN;4 - QN;G] - me[th;5 + (h4 + h5)Np3 — wNJG]} 3

M*N* |: k6A + k‘g h4 + h5) —|- th;5 — ngﬁ} — Lw,‘ﬁll[kilN;l + (k4 + ]435)N;2 — QN;:G]:|
N N N

wpa(A) = i wps(A) = ﬁp*, wpe(A) = e p=1,...,6.

From Egs. (60), we have

(61)
where

R(Dy) = (qu(Dx)>12X12,

1 02
R;j(Dx) = ;Fl(A)%‘ + w”(A)axiaxj’

Ri+3;j+3 (D )

82
— (h6¢A + hg)T'1(A)d;; + waa(A) 02,07,

82
(kGA + kg)rl(A)(SZJ + w33(A)m’
0? i
m,Ri;ﬁrG(DX) = w13(A)m7

0 0?2
Ripy6(Dx) = wlp(A)ngw&j(Dx) = wxn (A )8:3 T
T J

1

N*

1
Ritoj+6(Dx) = 57

Rij13(Dx) = wi2(A)

02 1

Riy3.j16(Dx) = w23(A)m - N
? J

wk1 L' (A)d;5,

82
8:@(’)% ’

0
Rit3p16(Dx) = wzp(A)%a Rite; = w31(A)

s 1
Riye;j+3(Dx) = w32(A)m - mbwmlrl(A)éija
ilj
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0 0
Riveip+6(Dx) = w3p(A) 5 Rp+6:i(Dx) = wpi (8) 75—,
0 0 62
Rpio:i3(Dx) = wpa(8) 5 = Ry ioriro(Dx) = wps(A) 5 - ©
Rp+6;l+6 = U)pl(A) Z?.] = 17 27 3 p7l = 4) 576
From Egs. (40), (59) and (61), we obtain where
OU =R"F"U. ethalxl 7 ) .
§g(x) = *mﬂ’lp = _7H (A — Ap)
The above relation implies i=lizp
9 6
RtrFtr — 0. T2 = H (>\L2 - /\12)71’7”3(1 = H (Af B )\3)71
i=1,i£7,i# i=1,i#q
Therefore, we obtain p=1,....79=1,...,9;1l=1,...,6,8,9,¢q=1,...,6.
(64)

We

Let

assume that

2 2
A FAN #F0pg=1,...,9p#q.

Lemma 1. Matrix Y defined above is the fundamental ma-
trix of operator @(A), i.e.

O(A)Y (x) = §(x) I(x). (65)

Proof: To prove the lemma, it is sufficient to prove that

7 T1(A)(A + X)) Y1 (x) = 6(x),
Yix) = (Yij(x)> 12x12 erlggg [ (A)2(A)Yiu(x) = 6(x), (66)
g=
9 Fl(A)Ylo;l()(X) = (5(X)
Yorapra(X) = Yorepie(X) = Y ragee(x Consider
g=1,9#7
7 7 41
dojmr (=17
Yptopt0(x ZTSng (x) =0, ZTU = %7
i=1
p:132a3;Q7Z:17"'712;Q7éza where
7 7 7
R | (SRRSO | [CE DY | [EYEP | [EHEPHICTEPY
=3 j=4 =5 p=6
7 7 7 7
2= [T = D) [TO3 =2 T3 =D TTOZ = A (8 = A9)
=3 j=4 =5 p=6
7 7 7 7
= [ OF= ) JIO3 =) JIO% =20 JT2 = 2208 = M)
1=2,i#3 J=4 =5 p=6
7 7 7 7
a= [ A=) MTIOS =2 TTOZ =208 = M),
i=2,i£4 3:3,#4 1=5 p=6

i=2,i#5 j:3,j;£5 l=4,l;£5 p:6
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7 7 7 7
w= ] (A H ) T & ) JI 3= 2)(E -,
i=2,i#£6 j#6 z 4,1#£6 p=5,p#£6
6 6 6 6
z= [T = A T3 =) []3 = A0 JTOA3 = 2202 = 22), (67)
i=2 j=3 1=4 p=>5
7 7 7 7 7
26 | (SRS | RO | [CEEPY | [EHEP | [CEEPHICrEPHE
=2 =3 =4 p=>5 q=6

On simplifying the right hand side of above relation, we  Also,

obtain
(A+ /\fj)gg(x) =4(x) + ()\12) - )\z)gg(x) p,g=1,...,9.
(70)
Z i = 0. (68) Now consider
7 7
Similarly, we find that T (A)(A+ A%)YH(X) _ H(A + )\12) Z T145 (x) =

;m(ﬁ -\ = O,iru[n()\? - A?)} =0, H (A 432 Z”lg{“ gA;)gg(X)} _

, ; .)]—0, 7
2| HA+/\2{ Zr1g+zmg A2 (x )}

Using Egs. (68)—(70) in the above relation, we obtain

(69)
7
T1(A)(A+ XY (x) = [J(A+ A2 [an (x)] =
=2
7 7 2
=[[a+x) {Zrlg(xf ) [5(x) + (A2 - Ag)qg(x)” H (A + )22 [Zrl [H (A2 — )\3)} gg(x)} —
=3 g=2 =3 i=1
7 -7 2 - q - 7 - 3 - .
=TI+ D rig [ TTOF =20 | [660) + (A3 = Ay (x)| | = (A + A7) an T3 =) (x)| =
i=4 Lg=3 j=1 4t 4 i=4 Lg=4 Lj=1

|
=
—=
—
>
AN V)
I
>
Q@ N
~
&
—~
ke
Il

1 [669 + (02 = 225 0]

Il
-
>
+
>
<o
S~—
3
=
Q
—
>
<o
I
>
<
S~—

-7 -
(A+27) Zrlg
Lg=5 L

<
Il

Tt

Rl

Il

i

1 T
<.

I

—_

<

Il

(23

<

I
—

I
=
=
—
>
Al V)
\
>
Q@ N
~
&
—~
X
I

|66 + 02 = 22y )]

I
—-
>
+
>
<o
<
=
<
—
>
SN
\
>~
SNIN)
S~—

-7 _
(A+29) Zrly
L g=6 L

i=6 -g=5 -j:l7 . =6 j=1
=@ +0) | Sy | TT02 - )] 60+ 0 W0 | = (& + X)) = o0
g=6 j=1
The Egs. (66)2 and (66)3 can be proved in the similar way. F(Dx)G(x) = F(Dx)R(Dx)Y(x) =
We introduce the matrix
=0(A)Y(x) =6(x)I(x
G(x) = R(DY (x) a (DYE =090

From Egs. (63), (65) and (71), we obtain Hence, G(x) is a solution to Eq. (38).
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Theorem 1. If the condition (37) is satisfied, then the matrix
G(x) defined by the Eq. (71) is the fundamental solution of
the system of equations (33) and the matrix G(x) is repre-
sented in the following form:

Ggi(x) = Rgi(Dx)Y11(x),
Gq(x) = Rgq(Dx)Yaa(x),
Ggj(x) = Rg;(Dx)Y10;10(x),
g=1,...,12;1=1,2,3; ¢q=4,...,9; 7 =10,11,12.

V. Basic Properties of Matrix G(x)

Theorem 2. Each column of matrix G(x) is a solution of
the system of equations (33) at every point x € E? except at
the origin.

Theorem 3. If the condition (§7) is satisfied, then the funda-
mental solution of the system F (D )U(x) = 0 is the matrix

B = (Bt))

12x12
1 o2 1~ 7.,
Bij(x) = {5\ Dedm; HRij]% (x),

1 82 1.7,

Biyaij+3(x) = & 02.07, I?GR” 52 (%),
0%
1 0?2 1 -
Bis;j = |5 — —Rij|sx),
+6,j+6(x) |:h/7 8.’1/'18.%'j h6 ]:| C2 (X)
Sr(x Gr(x Sr(x
Bio;10 = %,311;11 = %7312;12 = 1’(y )7

Biq = qu =0, Bi+3;l = Bl:,i+3 =0,

B; ~d:Bd" :OBd :OC*:*7§*:*7
1+6; ;146 ) p s S1 47T|X|’ 2

~ o2
= 8:518%

1=7,...,12; d,p =10,11,12; d # p.

—Adij;1,7=1,2,3;g=4,...,12;

(72)

VI. Fundamental Solutions of System of Equations
in Equilibrium Theory

If we put w = 0 in the system of equations (33), we ob-
tain the system of equations in the equilibrium theory of mi-
cromorphic thermoelastic diffusion with microtemperatures
and microconcentrations as:

[LA + (Mo + p) grad div]u — ~; grad 6+
—72 grad P + 3 grad ¢ = 0,

[k A + (kg + k5) grad div — ko]v — k3 grad 6 = 0,
heA + (hg + hs) grad div — holw — hz grad P = 0,
[

kidivv+ kA6 =0,

hidivw +hA P =0,
—vgdiva — pdivv —wdivw + S0 + a C+ (73)
+(vA —v)p = 0.
We introduce the second order matrix differential operators
with constant coefficients

B = (Ba(Dx) .

12x12

where matrix E(Dy) can be obtained from F(Dy) by taking
w=0.
The system of equations (73) can be represented as

E(D,)U(x) = 0. (74)

Definition 3. Operator E(D,) is said to be elliptic differen-
tial operator iff Eq. (37) is satisfied.

Definition 4. The fundamental solution of the system of
equations (73) (the fundamental matrix of operator E) is ma-

trix G/ (x) = (G;z (x)) satisfying condition

12x12

E(Dy)G’ (x) = §(x) I(x). (75)

We consider the system of non-homogeneous equations

(WA + (Mo + p) grad div]ju — vz grad ¢ = H',

[k6A 4 (kg + ks5) grad div — ko]v+
+ki grad@ — pgrad ¢ = V/,

[h6A + (hg + hs) grad div — ho]w+
+hi grad P —wgrad ¢ = W',

—yidivu — k3divv+ kA0 + Bp =72/,
—vpdivu — hsdivw + hAP + agp = X/,
yzdivu+ (YA —v)p =Y,

(76)

where H', V', W’ are three-component vector functions on
E3; Z’, X’ and Y are scalar functions on E3.

The system of equations (76) may also be written in the
form

E"(D,)U(x) = Q'(x), (77)

where E!" is the transpose of matrix E and Q'(x) =
=H ,V W Z' X' Y').
Applying operator div to the Egs. (76);_3, we obtain

AAdivu — y3A ¢ = divH,

(krA — ko) divv + k1 A O — oA ¢ = divV/,
(h7A*h2)leW+h1AP*MA¢: diVWl.

(78)
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Multiplying Eq. (76)s by —y3A and Eq. (78)1 by yA — v
and then subtracting, we get

A(A = 7?)diva = &y, (79)

where

1 -
2= ~(/\v—7§),<1>1 =

1
—— = AY/+
X )\[73

(yA—v)div H'].

Multiplying Eq. (76) by AA and Eq. (78); by 75 and then
subtracting, we get

AAY' —~3divH']. (80)

1
A(A—TQ)gb = (1)6, (DG = =
YA

Using Eq. (76)4 in Eq. (78)2 and then applying A(A +

Applying operators A(A—72)(A—D?) and A(A—72)(A+
—L?) to the equations (76)4 and (76)s, respectively, and us-
ing equations (81) and (82), we get

A?(A = 7%)(A - D?) 6 = dy, (83)

A%(A = 72)(A - L?) P = &5, (84)
where
1

oy E[ks D+ (A—D*)(A(A=7%) Z'+ 71Dy — BPs)],
1

Py E[hgfbj—i—(A L) (A(A =7T2) X' +72,®1 — adg)].

(85)

Applying operators A(A — 72),A%2(A — 72)(A +

—D?),A%(A — 72)(A — L?) to equations (76)1,(76)2 and
(76)3, respectively, and using Egs. (79)-(84), we obtain

—72), we get A A —-THu=d/,
A(A = 72)(A = DY) divv = ®y, (81) A2(A—7H(A-D*) A - k2 v==a"
kg (86)
where A2(A72)(AL2)(AZZ>W‘I>/”,
2= kA(o®
D kk7(k ko — ksky), @y = kk — [k A(0Ps+ where
. 1
+A-T )leV/)]JFﬁ[*’Yl‘I)l + 806 —A(A—T2)Z']. &' = —[A(A -7 H — (N +p) grad ®; + 3 grad &g,
7 p
1
Using Eq. (76)5 in Eq. (78)3 and then applying A(A +  ®” k—[A2(A 72)(A = D?*)V' — (ks +ks5) A grad @9+
—72), we get 6
—k; grad @4 4 0 A(A — D?) grad &),
AA =73 (A - L) divw = B, 82
( T )( ) 1IVw 3 (82) q’///:i[A2(A_TQ)(A_L2)W/_(h4+h5)Agrad(D3+
6
where —hy grad @5 + w A(A — L?) grad ®g).
(87)
L? = 7 h7 7 (hhe = hahy), @3 = - h7 ——[h Alwde+ From Egs. (80), (83), (84) and (86), we get
hy .
HA=T) div W45 [=7281 +a®s — A(A-7%) X'] A(A) U(x) = b(x), (38)
! where
B(x) = (B, 8", ®",dy, 05, P6), A(A) = (qu(A)> :
12x12
k
A(8) = A8 = 7)., Apvaiald) = A(A — ) - D2 (8- 2),
6
h
Aiteire(D) = A (A —7%)(A - L?) <A - hz)»/\w;lo = A*(A-7%)(A - D?),
A11;11 = A2(A — 7'2)(A — L2)7A12;12 = A2(A — T2),
Ay =005 =1,2,3; 1,5 =1,...,12; L # j.
Egs. (80), (85) and (87) can be rewritten as
$(x) = T"(Dx)Q'(x), (89)

where
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T(D,) = (Tngx))M |

1 2y 5
TMDQ_;A@ T%%+mMA%mwf
Tivss(Da) = = A2(A — 72)(A = D?) 5y + man(A)
i+3i+3(Dx) = - v 0y
1 2 2 2 82
Tite5+6(Dx) = he AYA =)A= L) bij + m22(A>8x-8x i
1 J
82
Tit0;i+9(Dx) = miy35i43(A), Ti;j+3(Dx) = mia(A ’
i+3(Dx) 12( )8.%‘1033]'
2 0

Tij+6(Dx) = m13(A)MaTi;j+9(Dx) = ml;j+3(A)%a
2 i 1

Tiys.i(Dx) = Tiysj+6(Dx) = Tiys11(Dx) = Ti13.12(Dx) =0,

0
Ti+3:10(Dx) = m2a(8) 5, Tiv;5(Dx) = Tivej+3(Dx) = 0,

0
Tit6;10(Dx) = Tiq6:12(Dx) = 0, Tit6.11(Dx) = m35(A)8m-’

T10::(Dx) = Tho,i+6(Dx) = T10;11(Dx) = Tho;12(Dx) =0,

0
Tho;i+3(Dx) = m42(A)%aT11;i(Dx) =Ti1443(Dx) =0,

T11.10(Dx) = Ti1;12(Dx) = 0, T11,i46(Dx) = mSS(A)ﬁxl’
0
T12;i16(Dx) = mﬁ?’(A)ax,’

0 0
T19,:(Dx) = m61(A)£7T12;i+3(Dx) = mGZ(A)%;

T12;10(Dx) = mea(A), Th2;11(Dx) = mes(A),
A(A — 7'2)[/{3(]€4 + ]{35)A + k‘lk‘3]

(Ao + (YA —v) +3
A) = — a A)—
mi1(A) Y ,Maa(A) i ’
A(A = 72)[h(hs + hs)A + bk AA — 22V (b A — k
maz(A) = — (A—72) ;L;; - 5) 1 3],m44(A) _ A Tk)](€77 2),
A(A =72)(hsA —h A
mss(A) = ( 7‘}1)277 2)7m66(A) -2
miz(A) = _(Ai %)[kl’yl('yA*U)+’Ys(kQA+klﬂ)]
’ Y Xk ky ’
m (A)__(A_%)[hl'h(’YA—U)+'y3(th+h1a)]
: Yy Xhhy ’
mis(A) = (k7 A — k2) (YA — v) - v3A(oks — Bkr) — 7308 ka
~ Nk ;
mis(A) = Yo(h7 A — ho) (YA — v) — y3A(whs — ahy) — y3a hs
yXhhy ,
~ B _ksA(a-7?) _hsAA -7
mie(A) = ’Y:\,mzz;(A) = K her ,mas(A) = e ,
ki AGA - 7*)(A - 32) By A(A — 72)(A — 12)
mya(A) = — oy ko ,msz(A) = — i he ,
me1 (D) 28 mea(A) = AA - )Mok A+ B k) — kimys]
61 < o 1162 ’y;kk? 7
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A(A — %)[A(w h A+ ahy) — hiv2ys)

me3(A) = \ ’
Y Ahhy

mea(A) = [v173 (k7 2)+~[ (oks = Bkr) + 5 2]]» ©0)
YNk ks
A A — ho) + A[A(whs —
es(A) = [v2y3(h7 ha) + ?[h }Ew hs —ahy) + OéhQ]]; i,j=1,2,3.
¥ 7

From Egs. (77), (88) and (89), we get

On
Let

Y00 = (Y500) Y00 = i () + rhast () + i (),
1212
Y 3.p43(X) = 79165 (X) + 79967 (X) + 79363 (X) + 79465 (X) + 79655 (%),
Yy 4 6ip6(X) = 13163 (%) + 13267 (%) + 75365 (%) + 75565 (%) + 73767 (%),
Y0.10(X) = 7165 (X) + 7067 (X) + 7363 (%) + 7465 (%),
Y101 (%) = 75165 (%) + 75067 (%) + 75363 (%) + 75565 (%),
Y1/2;12<X) = 7257 (%) + 7353 (%),
Y:]’Z(x) =0;p=123;¢q,2=1,...,12; q # z,

where

e—T\x| e—D\x| e
* - _—_  * - * = —
5 (%) = 4r|x]| 1oa X 47| x| 155X

. ekl e~ T2l

56 (x) = _W’C7 X) = _Wv
= *%77"/12 = —Ti3 = *7147

rh = —(1 D)2, rhy = —(72D* + D*r2 + 7273) (1 D7) 4,

1 1
- [
T A DY ) T DD ) (D )
1 .
i )~ D)

= —(TLTQ)_z, (92)
_ 1
rhy = —(T°L* + L5 + 7°73) (1 L7a) ™%, rfy = (2 = L2)(r2 — 72)’
2
1 1
/o -
TIP3 "T A -

1 , 72 + D? , 1 1
72D2’r42: T4D4 ,7’43: T4(T2_D2)7r44: D4(D2_T2)a
1 " :TQ+L2 ! :;T/ ;
7272752 FA[4 753 74(7_2 L2)’ 55 L4(L2772)’

1 k h
r ’ 2 __h2 o 702
7’62**7"63***T4a71 =772 =

o
T41 =

o
51 =
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Lemma 2. Matrix Y’ defined above is the fundamental ma-
trix of operator A(A), i.e.

A(A)Y (x) = §(x) I(x). (93)

Proof: To prove the lemma, it is sufficient to prove that

AQ(A T )Yn( ) x),

™) (A — D?)(A
m)(A - L?)(A
7'2)(A D? )Y10 10(x) =

- 72)(A - LQ)Y11;11(X)

5(X).

It is much easier to prove Egs. (94). It has been left for the

reader.
‘We introduce the matrix

AQ(A

Az(
AQ(A
A2(A
AQ(A - 72)Y1/2;12(X) =

G/(x) = T(Dx)Y'(x). (95)

From Egs. (91), (93) and (95), we obtain

E(Dy)G’(x) = §(x)I(x).

Hence G'(x) is a solution to Eq. (75).

Theorem 4. If condition (37) is satisfied, then matrix G’(x)
defined by Eq. (95) is the fundamental solution of the sys-
tem of equations (73) and matrix G’(x) is represented in the
following form:

;l(x) = Tgl(DX)Ylll (%), ;;;l+3 (x)= Tg;l+3(DX)Y4/4(X)v
G;;l+6 (x)= Tq;l+6(DX)Y7/7(X)7 Glgj (x)= Ty; (DX)Yj/j (x),

g=1,...,11;1=1,2,3; j = 10,11, 12.
(96)

VII. Conclusions

The fundamental solution of a system of equations in
the theory of micromorphic thermoelastic diffusion materi-
als with microtemperatures and microconcentrations in case
of steady oscillations in terms of elementary functions has

CMST 28(1) 11-25 (2022)

been constructed. Using the potential method, the funda-
mental solution of the system of equations makes it possi-
ble to investigate three-dimensional boundary value prob-
lems of the theory of micromorphic thermoelastic diffusion
materials with microtemperatures and microconcentrations.
Also some basic properties of the fundamental matrix are
discussed.
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