• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 22 (1) 2016, 19-29

Finite Element Method for Stochastic Extended KdV Equations

Karczewska Anna 1*, Szczeciński Maciej 1, Rozmej Piotr 2**, Boguniewicz Bartosz 2

1 Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra, Poland
∗E-mail: a.karczewska@wmie.uz.zgora.pl

2 Faculty of Physics and Astronomy, Institute of Physics University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra, Poland
∗∗E-mail: p.rozmej@if.uz.zgora.pl

Received:

Received: 12 September 2015; revised: 26 January 2016; accepted: 29 January 2016; published online: 16 March 2016

DOI:   10.12921/cmst.2016.22.01.002

Abstract:

The finite element method is applied to obtain numerical solutions to the recently derived nonlinear equation for shallow water wave problem for several cases of bottom shapes. Results for time evolution of KdV solitons and cnoidal waves under stochastic forces are presented. Though small effects originating from second order dynamics may be obscured by stochastic forces, the main waves, both cnoidal and solitary ones, remain very robust against any distortions.

Key words:

nonlinear equations, second order KdV equations, shallow water wave problem, stochastic forces

References:

[1] A. Karczewska, P. Rozmej and L. Rutkowski, A new nonlinear equation in the shallow water wave problem, Physica Scripta 89, 054026 (2014).
[2] A. Karczewska, P. Rozmej and E. Infeld, Shallow-water soliton dynamics beyond the Korteweg-de Vries equation, Physical Review E 90, 012907 (2014).
[3] G.I. Burde, A. Sergyeyev, Ordering of two small parameters in the shallow water wave problem, J. Phys. A: Math. Theor. 46, 075501 (2013).
[4] A. Karczewska, P. Rozmej and E. Infeld, Energy invariant for shallow water waves and Korteweg – de Vries equation. Is energy always invariant?, arXiv:1503.09089, to be published.
[5] A. Debussche and I. Printems, Numerical simulation of the stochastic Korteweg-de Vries equation, Physica D 134, 200-226 (1999).
[6] A. Karczewska, P. Rozmej, M. Szczeci ́nski and B. Boguniewicz, Finite element method for extended KdV equations, Int. J. Appl. Math. Comp. Sci. (2016), in print.
[7] P.G. Drazin and R.S. Johnson, Solitons: An Introduction, Cambridge University Press, Cambridge, 1989.
[8] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.
[9] T.R. Marchant and N.F. Smyth, The extended Korteweg–de Vries equation and the resonant flow of a fluid over topography, J. Fluid Mech. 221, 263-288 (1990).
[10] E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos, 2nd edition, Cambridge University Press, 2000.
[11] N.J. Zabusky and M.D. Kruskal, Interaction of ‘Solitons’ in a Collisionless Plasma and the Recurrence of Initial States, Phys. Rev. Lett. 15, 240-243 (1965).
[12] A. de Bouard, A. Debussche, On the stochastic Korteveg-de Vries equation, J. Functional Analysis 154, 215-251 (1998).
[13] T. Oh, Periodic stochastic Korteweg-de Vries equation with additive space-time white noise, Anal. PDE 2, 281-304 (2009).
[14] T. Oh, Invariance of the White Noise for KdV, Commun. Math. Phys. 292, 217-236 (2009).
[15] M. Remoissenet, Waves Called Solitons: Concepts and Experiments, Springer, 1999.
[16] T.R. Marchant and N.F. Smyth, Soliton Interaction for the Korteweg-de Vries equation, IMA J. Appl. Math. 56, 157-176 (1996).
[17] T.R. Marchant, Coupled Korteweg-de Vries equations describing, to higher-order, resonant flow of a fluid over topography, Phys. Fluids 11(7), 1797-1804 (1999).
[18] Q. Zou and CH-H. Su, Overtaking collision between two solitary waves, Phys. Fluids 29, No. 7, 2113-2123 (1986).
[19] J. Villegas G., J. Castano B., J. Duarte V., E. Fierro Y., Wavelet-Petrov-Galerkin method for the numerical solution of the KdV equation, Appl. Math. Sci. 6, 3411-3423 (2012).
[20] S.-ul-Islam, S. Haq and A. Ali, A meshfree method for the numerical solution RLW equation, J. Comp. Appl. Math. 223, 997-1012 (2009).
[21] A. Canivar, M. Sari and I. Dag, A Taylor-Galerkin finite element method for the KdV equation, Physica B 405, 3376-3383 (2010).
[22] T.R. Taha, and M.J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations III. Numerical, the Korteweg–de Vries equation, Journal of Computational
[23] M.W. Dingemans, Water wave propagation over uneven bottoms, World Scientific, Singapore, 1997. http://repository.tudelft.nl

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_26_4_2020_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST