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Finite Element Method for Stochastic Extended KdV Equations
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Abstract: The finite element method is applied to obtain numerical solutions to the recently derived nonlinear equation for
shallow water wave problem for several cases of bottom shapes. Results for time evolution of KdV solitons and cnoidal
waves under stochastic forces are presented. Though small effects originating from second order dynamics may be obscured
by stochastic forces, the main waves, both cnoidal and solitary ones, remain very robust against any distortions.
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I. INTRODUCTION

The Korteveg-de Vries (KdV) equation appears as
a model for the propagation of weakly nonlinear dispersive
waves in several fields like gravity driven waves on a surface
of an incompressible irrotational inviscid fluid [7-10, 15],
ion acoustic waves in plasma [10], impulse propagation in
electric circuits [15] and so on.

In hydrodynamical context the KdV equation is obtained
as first order approximation of Euler equations with appropri-
ate boundary conditions for the surface and the flat bottom.
Small parameters, like α = a/H , ratio of the wave ampli-
tude a to the fluid depth H and β = (H/L)2, where L is
a mean wavelength, are introduced. In the derivation of KdV
the velocity potential of the fluid is expanded as a series with
respect to the vertical coordinate and then only terms up to
first order in small parameters are retained in all equations
describing the system. Despite of its simplicity, KdV equation
appeared to be a good approximation for many phenomena,
see e.g. [7, 8, 10, 15] and focused enormous attention of
physicists, mathematicians and engineers.

In order to extend possible applications of this kind of
theories to the cases when parameters α, β are not very
small the second order approximation of velocity poten-
tial was considered and subsequently second order KdV
type equation (sometimes called extended KdV) was de-
rived, see, e.g. [3, 9]. This equation, written in scaled co-
ordinates and fixed reference frame has the following form
(η(x, t) is the surface wave function)

ηt + ηx + α
3

2
ηηx + β

1

6
η3x −

3

8
α2η2ηx (1)

+ αβ

(
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ηxη2x +
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12
ηη3x

)
+

19

360
β2η5x = 0

Here and in the following the indexes denote partial deriva-
tives, that is ηx ≡ ∂η

∂x , ut ≡
∂η
∂t and so on.

There were also attempts to extend the KdV theory to
cases when the bottom of the fluid container is not flat. This
subject is extremely important to understand the behaviour of
waves coming to shallower regions and such phenomenon as
tsunami creation. However, until last year there were no stud-
ies in this direction which could directly incorporate terms
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from the bottom function into the wave equation. In [1, 2],
some of us derived second order KdV type equation contain-
ing terms directly related to the bottom function h(x)

ηt + ηx + α
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4
(hη2x)x
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= 0,

where δ = ah/H is another small parameter, ah stands for the
amplitude of the bottom variations and H is the undisturbed
(mean) depth of the fluid. It is assumed that h(x) is continu-
ous, at least three times differentiable and lim

x→±∞
h(x) = 0.

For details of derivation of that equation, see [1, 2]. Note that
when the bottom is flat, δ = 0, the equation (2) reduces to (1).

The present paper aims to find numerical solutions to
stochastic versions of second order KdV type equations (1)
and (2). In order to do this we first try to follow the finite
element method (FEM) used by Debussche and Printems
in [5]. Their method was good enough for the the stochastic
Korteweg-de Vries equation of the form [5, Eq. 1.2]

ut + uux + ε uxxx = γ ξ̇. (3)

In Eq. (3) the noise term ξ(x, t) is a Gaussian process with
correlations

E ξ̇(x, t) ξ̇(y, s) = c(x− y) δ(t− s) (4)

and γ is the amplitude of the noise. Equation (3) with rhs
equal zero is the Korteweg-de Vries equation written in a mov-
ing reference system with coordinates scaled in a particular
way. This form was convenient for the authors in order to
apply the finite element method (FEM) in their numerical
simulation.

In the case of periodic boundary conditions the noise term
ξ has to be introduced in a different way. Since the Brownian
motions are nowhere differentiable we have to introduce the
mathematical form of (3).

Let (Ω,F , (Ft)t≥0,P) denote a stochastic basis. The Itô
form of (3) can be written in the form

du+

(
u
∂u

∂x
+ ε

∂3u

∂x3

)
dt = γ Φ dW. (5)

In (5), W is a Wiener process on L2(0, L) of the form

W (t, x) =

∞∑
i=0

βi(t) ei(x), (6)

where {ei}i∈N is an orthonormal basis of L2(0, L) and
{βi}i∈N is a sequence of independent real valued Brown-
ian motions, defined on the stochastic basis. In (5), Φ is an
appropriate linear map from L2(0, L) to L2(0, L). For more
details, see [5].

II. NUMERICAL APPROACH

Our aim was to extend the approach used in [5] in order
to numerically solve second order stochastic version of the
equation with an uneven bottom (2)
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)
= γ ξ̇.

Note that this equation, in contrast to KdV equation, has to be
solved in the fixed coordinate system because transformation
to a moving frame would make the bottom function time
dependent.

Setting δ = 0 in (7) one obtains second order stochastic
KdV type equation (that is the equation for the flat bottom)

ηt + ηx + α
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360
β2η5x = γ ξ̇.

which can be solved within the same algorithm.
The details of numerical scheme for solution of equations

(1), (2) were described in [6]. Therefore in this paper we only
briefly summarize that description emphasizing the stochas-
tic part. We focus on (7) because in our scheme (8) is the
particular case of (7) when δ = 0.

We adapt Crank-Nicholson scheme for time evolution
using time step τ . Introducing the following variables:

v = ηx, w = vx, p = wx, q = px, g = hxx (9)

we can write fifth order differential equation (7) as the cou-
pled set of first order differential equations
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(
Wn+1 −Wn

)
+τ

∂

∂x

[
ηn+

1
2 +

3α

4

(
ηn+

1
2

)2
+
β

6
wn+

1
2

−1

8
α2
(
ηn+

1
2

)3
+ αβ

(
13

48

(
vn+

1
2

)2
+

5

12

(
ηn+

1
2wn+

1
2

))
+

19

360
β2
(
qn+

1
2

)
1

4
βδ

(
− 2

β

(
hn+

1
2 ηn+

1
2

)
(10)

+ηn+
1
2 gn+

1
2 + hn+

1
2wn+

1
2

)]
= 0,

∂

∂x
ηn+

1
2 − vn+ 1

2 = 0,

∂

∂x
vn+

1
2 − wn+ 1

2 = 0,

∂

∂x
wn+

1
2 − pn+ 1

2 = 0,

∂

∂x
pn+

1
2 − qn+ 1

2 = 0,



Finite Element Method for Stochastic Extended KdV Equations 21

where
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In (10), ηn=η(x, nτ), ηn+1 =η(x, (n+ 1)τ) and so on.

II. 1. Finite element method
Since solutions to stochastic equation are not expected to

be smooth, we follow the arguments given in [5] and apply
Petrov-Galerkin space discretization and the finite element
method. We use a piecewise linear shape function and piece-
wise constant test functions. We consider wave motion on
the interval x ∈ [0, L] with periodic boundary conditions.
Let N ∈ N, then we use a mesh Mχ of points xj = jχ,
j = 0, 1, . . . , N , where χ = L/N . Let V 1

χ be a space of
a picewise linear functions ϕ(x), such that ϕ(0) = ϕ(L),
defined as

ϕj(x) =


1
χ (x− xj−1) if x ∈ [xj−1, xj ]
1
χ (xj+1 − x) if x ∈ [xj , xj+1]

0 otherwise.
(12)

For test functions we choose the space of piecewise constant
functions ψ(x) ∈ V 0

χ , where

ψj(x) =

{
1 if x ∈ [xj , xj+1)
0 otherwise. (13)

Approximate solution and its derivatives may be ex-
panded in the basis (12)
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Therefore in a weak formulation we can write (10) as
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for any i = 1, . . . , N , where abbreviation ∂x is used for ∂
∂x .
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Here and in the following,

(f, g) :=

∫ L

0

f(x)g(x)dx

denotes the scalar product of functions.
In order to obtain a noise in space, at each time step n and

each node j a random number κχ,τj,n is computed according to
a normal law and such that it forms a sequence of independent
random variables. Then we can set

Φ
(
Wn+1
χ −Wn

χ

)
=
√
τ

N∑
j=1

1

||φj ||L2(0,L)

κχ,τj,n φj

=
√
τ Nφ

N∑
j=1

κχ,τj,n φj ,

where notation Nφ =
1

||φj ||L2(0,L)

was introduced for ab-

breviation.
Insertion (14) into (15) yields a system of coupled linear

equations for coefficients anj , b
n
j , c

n
j , d

n
j , e

n
j . Solution of this

system supplies an approximate solution of (1) given in the
mesh points xj .

Denote

C
(1)
ij := (ϕj , ψi),

C
(2)
ij := (ϕ′j , ψi),

C
(3)
ijk := (ϕ′jϕk + ϕjϕ

′
k, ψi),

C
(4)
ijkl :=

([
ϕ′jϕkϕl + ϕjϕ

′
kϕl + ϕjϕkϕ

′
l

]
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) (16)

where ϕ′j = dϕ
dx (xj). Simple integration shows that

C
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 1
2χ if i = j or i = j − 1

0 otherwise,
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C
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−1 if i = j

1 if i = j − 1

0 otherwise.

(18)

A little more complicated calculation yields

C
(3)
ijk = C

(2)
ij δjk and C

(4)
ijkl = C2

ij δjk δkl. (19)

Properties (19) allow to reduce double and triple sums
arising in nonlinear terms in (15) to single ones.

The final system of nonlinear equations for coefficients
an+1
j , bn+1

j , cn+1
j , dn+1

j , en+1
j of expansion of the solution in

the basis {φi} has the form (for details of derivation, see [6])
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where i = 1, 2, . . . , N .
Define 5N -dimensional vector of expansion coeffi-

cients (14)

Xn =


An

Bn

Cn

Dn

En

 , (21)

where

An =


an1
an2
...
anN

, Bn =


bn1
bn2
...
bnN

, Cn =


cn1
cn2
...
cnN

,

Dn =


dn1
dn2
...
dnN

, and En =


en1
en2
...
enN

.
In (20), An+1, Bn+1, Cn+1, Dn+1, En+1 represent the

unknown coefficients whereas An, Bn, Cn, Dn, En the
known ones. Note that the system (20) is a nonlinear one.

In an abbreviated form the set (20) can be written as

Fi(X
n+1, Xn) = 0, i = 1, 2, . . . , 5N. (22)
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Since this equation is nonlinear we can use Newton method
at each time step. That is, we find Xn+1 by iterating the
equation

(Xn+1)m+1 = (Xn+1)m + J−1(Xn+1)m = 0, (23)

where J−1 is the inverse of the Jacobian of the F (Xn+1, Xn)
(22). Choosing (Xn+1)0 = Xn we usually obtain the approx-
imate solution to (22), (Xn+1)m inm = 3−5 iterations with
very good precision. The Jacobian itself is a particular sparse
matrix (5N × 5N) with the following block structure

J =


(Aa) (Ab) (Ac) (0) (Ae)
(C2) −(C1) (0) (0) (0)
(0) (C2) −(C1) (0) (0)
(0) (0) (C2) −(C1) (0)
(0) (0) (0) (C2) −(C1)

 ,

(24)
where each block (·) is a two-diagonal sparse (N×N) matrix.
The matrix Aa is given by

Aa=



a11 0 0 · · · 0 a1N−1 a1N
a21 a22 0 · · · 0 0 a2N
0 a32 a33 0 · · · 0 0
...

...
...

. . .
...

...
...

0 0 · · · aN−3N−4 aN−3N−3 0 0

0 0 · · · 0 an−2N−3 aN−2N−2 0

aN1 0 · · · 0 0 aN−1N anN


.

(25)
In (25) the nonzero elements of (Aa) are given by

aij =
∂ Fi

∂ an+1
j

, (26)

where Fi, i = 1, . . . , N is given by the first equation of
the set (20). Elements in the upper right and lower left
corners come from periodic boundary conditions. Matrices
(Ab), (Ac), (Ae) have the same structure as (Aa), only ele-
ments aij have to be replaced, respectively, by

bij =
∂ Fi

∂ bn+1
j

, cij =
∂ Fi

∂ cn+1
j

and eij =
∂ Fi

∂ en+1
j

.

Matrix (Ad) vanishes since there is no fourth order derivative
in the extended KdV equation and dn does not appear in F .

Matrices C1 and C2 are constant. They are defined as
Ck, k = 1, 2

Ck=


C

(k)
11 0 · · · C

(k)
11 C

(k)
1N

C
(k)
21 C

(k)
22 · · · 0 C

(k)
2N

...
...

. . .
...

...
0 0 · · · C

(k)
N−1N−1 0

C
(k)
N1 0 · · · C

(k)
N−1N C

(k)
NN

, (27)

where C(k)
ij are defined in (17) and (18).

III. RESULTS OF SIMULATIONS

In this section some results of numerical calculations of
soliton waves with stochastic forces are presented. Simula-
tions were performed by solving the set of equations (20)
step by step. The main aim was to compare time evolution of
waves described by second order KdV-type equation with bot-
tom dependent term with stochastic forces to those obtained
without these forces (obtained in previous paper [6]). In or-
der to do this several cases of time evolution are presented
in the following convention. For each particular case of the
bottom function h(x) a sequence of three figures is presented
in which the amplitude of the stochastic force is 0, 0.001 and
0.002, respectively. In this way the influence of an increas-
ing stochastic term on the wave evolution is exhibited. In all
presented cases δ = 0.2, that is, the amplitude of the bottom
variation is 20% of the average water depth. In order to avoid
overlaps of the wave profiles at different time instants, the
consecutive profiles are shifted vertically by 0.15.

III. 1. Soliton waves
In figures 1-3 we compare time evolution of the wave

(initialy a KdV soliton) when the bottom function represents
a wide Gaussian hump,

h1(x) = δ exp

(
− (x− 40)2

72

)
.

In figures 4-6 we compare time evolution of the wave
(initialy a KdV soliton) when the bottom function represents
a double Gaussian hump,

h2(x) = δ

[
exp

(
− (x− 30)2

4

)
+ exp

(
− (x− 48)2

4

)]
.

In figures 7-9 we compare time evolution of the initial
KdV soliton when the bottom function represents an ex-
tended hump,

h3(x) = δ

(
tanh(x− 27)− tanh(x− 45)

2

)
.

In figures 10-12 time evolution of the initial KdV soli-
ton is compared for different amplitude of the stochastic
term when the bottom function represents a valley, h4(x) =
−h3(x).
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Fig. 1. Time evolution of the initial KdV soliton governed by the
extended KdV equation (2) obtained with FEM method, by numeri-
cal solution of the set of equations (20) with γ = 0. Dashed lines

represent the undisturbed fluid surface
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Fig. 2. The same as in Fig. 1 but with a moderate amplitude of
stochastic force, γ = 0.001
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Fig. 3. The same as in Fig. 1 but with a larger amplitude of stochastic
force, γ = 0.002
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Fig. 4. The same as in Fig. 1 but for a double Gaussian hump bottom
function
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Fig. 5. The same as in Fig. 4 but with a moderate amplitude of
stochastic force, γ = 0.001
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Fig. 6. The same as in Fig. 5 but with a larger amplitude of stochastic
force, γ = 0.002
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Fig. 7. The same as in Fig. 1 but for the bottom function in the form
of an extended hump
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Fig. 8. The same as in Fig. 7 but with a moderate amplitude of
stochastic force, γ = 0.001
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Fig. 9. The same as in Fig. 8 but with a larger amplitude of stochastic
force, γ = 0.002
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Fig. 10. The same as in Fig. 1 but for the bottom function in the
form of an extended valley
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Fig. 11. The same as in Fig. 10 but with a moderate amplitude of
stochastic force, γ = 0.001
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Fig. 12. The same as in Fig. 8 but with a larger amplitude of stochas-
tic force, γ = 0.002
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In all the examples presented, with different shapes of
bottom functions, one observes the same general trend. When
the amplitude of the stochastic force is relatively small
(γ = 0.001), some small structures originated from second
order terms in the evolution equation (2) can be still visi-
ble. Simultaneously, the main soliton wave is disturbed only
a little by the stochastic term.

When the amplitude of the stochastic force increases,
through γ = 0.0015 which case is not shown here, to
γ = 0.002, the structures from second order terms begin
to be more and more obscured by the noise and are not visible
at γ = 0.002. The main wave, however, appears to be strongly
resistant to the noise and preserves its soliton character.

This character is preserved also for times much longer
than in presented examples. To see that we needed, however,
to adapt our different code, based on finite difference method,
to the stochastic case. That code proved to be very efficient
in numerical calculations presented in [1, 2, 4]. The reasons
why the finite difference method is more effective than finite
element method presented here are explained in detail in the
next section.

III. 2. Cnoidal waves
The cnoidal solutions to KdV are expressed by the Ja-

cobi elliptic cn2 function. The explicit expression for such
a solution is the following, see, e.g. [23]:

η(x, t) = η2 +Hcn2

(
x− ct

∆

∣∣∣∣m) , (28)

where

η2 =
H

m

(
1−m− E(m)

K(m)

)
, ∆ = h

√
4mh

3H
, (29)

and

c =
√
gh

[
1 +

H

mh

(
1− m

2
− 3E(m)

2K(m)

)]
. (30)

Solution (28)-(30) is written in dimensional quantities, where
H is the wave height, h is mean water depth, g is gravitational
acceleration and m is an elliptic parameter. K(m) and E(m)
are complete elliptic integrals of the first and the second kind,
respectively. The value of m ∈ [0, 1] governs the shape of the
wave. When m→ 1 the solution tends to a soliton wave with
distance between the peaks going to infinity. When m→ 0
the cnoidal solution tends to usual sinusoidal wave.

For our equations (2) and (1) we have to express the
formulas (28)-(30) in dimensionless variables.

In figures 13-15 we display time evolution of the wave,
initialy cnoidal solution of KdV equation with m = 1−10−8

for γ = 0, 0.001 and 0.0015. In this case the bottom function
is h(x) = δ 1

2 [−tanh(2(x−8.6)− 1
2 )+tanh(2(x−66.5552)−

1
2 )] and the wavelength of the cnoidal wave is d ≈ 40.324.
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Fig. 13. Time evolution, according to eq. (2), of the cnoidal wave
for the bottom function in the form of an extended valley. The x
interval is equal to the double wavelength of the cnoidal wave with

m = 1-10−8
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Fig. 14. The same as in Fig. 13 but with a moderate amplitude of
stochastic force, γ = 0.001
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Fig. 15. The same as in Fig. 14 but with a larger amplitude of
stochastic force, γ = 0.0015
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Fig. 16. Time evolution, according to eq. (2), of the cnoidal wave for
the bottom function in the form of an extended valley. The x interval
is equal to the wavelength of the cnoidal wave with m = 1-10−16
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Fig. 17. The same as in Fig. 16 but with a moderate amplitude of
stochastic force, γ = 0.001
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Fig. 18. The same as in Fig. 17 but with a larger amplitude of
stochastic force, γ = 0.0015

IV. CONCLUSIONS

The main conclusions obtained from our numerical simu-
lations of time evolution of KdV-type waves with respect to
second order equations with bottom terms are the following:
• Both solitary and cnoidal solutions of KdV equations

are extremely robust structures for many possible dis-
tortions. In previous studies [1, 2, 4] we showed the
resistance of these waves to second order terms in ex-
tended KdV equation, including terms from an uneven
bottom.

• In this paper we showed that an inclusion of a stochas-
tic force into second order KdV-type equation does not
disturb much the shape of the main wave even for large
amplitude of the noise, although the secondary wave
structures can be completely obscured by the noise.
It seems, however, that the main wave is the most ro-
bust for solitary waves (which is a limitnig case of
cnoidal waves when m tends to 1). That robustness
with respect to stochastic noise diminishes when pa-
rameter m decreases below 1.

• Finite element method, though sufficient for numerical
study of stochastic KdV equation in [5] is not so well
suited for the higher order KdV type equation, and par-
ticularly less satisfactory when the bottom is not flat.
For KdV equation considered in a moving frame (3)
the wave motion is slow and important time evolution
can be calculated using not very long space and time
intervals. This property allowed the authors of [5] to
use relatively low number N = 200 of the mesh size
to obtain relevant results. Consequently, since KdV
is a third order differential equation, the size of Jaco-
bian matrix used in numerical scheme, (3N × 3N) is
still low and allows for fast calculations. Second order
("extended") KdV equation (1), which is a differential
equation of fifth order, can be studied both in a moving
reference frame and in a fixed frame. In the first case
the size of the Jacobian increases to (5N × 5N) and
when N is of the same order the results can still be
obtained in reasonable computing time. The equation
taking into account bottom variation (2), however, has
to be solved in the fixed frame. Then, since waves move
much faster, in order to obtain a good description of
the wave evolution, substantially longer space intervals
have to be used. For a resolution of fine structures of
the wave relatively dense mesh has to be applied so N
is usually an order of magnitude larger than in the case
of moving reference frame. Then computer time for
inversion of the Jacobian becomes very large and detail
calculations are not practical. In these cases the finite
difference method used in [1, 2], adapted for stochastic
equation, proves to be more efficient.
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