• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 21 (1) 2015, 5-10

Ergodicity of the Martyna-Klein-Tuckerman Thermostat and the 2014 Ian Snook Prize

Hoover Wm.G. , Hoover C.G.

Ruby Valley Research Institute, Highway Contract 60, Box 601
Ruby Valley, Nevada 89833
E-mail: hooverwilliam@yahoo.com

Received:

Received: 27 January 2015; accepted: 30 January 2015; published online: 05 March 2015

DOI:   10.12921/cmst.2015.21.01.002

Abstract:

Nosé and Hoover’s 1984 work showed that although Nosé and Nosé-Hoover dynamics were both consistent with Gibbs’ canonical distribution neither dynamics, when applied to the harmonic oscillator, provided Gibbs’ Gaussian distribution. Further investigations indicated that two independent thermostat variables are necessary, and often sufficient, to generate Gibbs’ canonical distribution for an oscillator. Three successful time-reversible and deterministic sets of two-thermostat motion equations were developed in the 1990s. We analyze one of them here. It was developed by Martyna, Klein, and Tuckerman in 1992. Its ergodicity was called into question by Patra and Bhattacharya in 2014. This question became the subject of the 2014 Snook Prize. Here we summarize the previous work on this problem and elucidate new details of the chaotic dynamics in the neighborhood of the two fixed points. We apply six separate tests for ergodicity and conclude that the MKT equations are fully compatible with all of them, in consonance with our recent work with Clint Sprott and Puneet Patra.

Key words:

Chaotic Dynamics, ergodicity, fixed points, time reversibility

References:

[1] S. Nosé, “A Unified Formulation of the Constant Tempera-
ture Molecular Dynamics Methods”, The Journal of Chemical
Physics 81, 511-519 (1984).
[2] S. Nosé, “A Molecular Dynamics Method for Simulations
in the Canonical Ensemble”, Molecular Physics 52, 191-198
(1984).
[3] W. G. Hoover, “Canonical Dynamics: Equilibrium Phase-
Space Distributions”, Physical Review A 31, 1695-1697
(1985).
[4] W. G. Hoover and B. L. Holian, “Kinetic Moments Method
for the Canonical Ensemble Distribution”, Physics Letters A
211, 253-257 (1996).
[5] N. Ju and A. Bulgac, “Finite-Temperature Properties of
Sodium Clusters”, Physical Review B 48, 2721-2732 (1993).
[6] G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nosé-Hoover
Chains: the Canonical Ensemble via Continuous Dynamics”,
The Journal of Chemical Physics 97, 2635-2643 (1992).
[7] D. Kusnezov, A. Bulgac and W. Bauer, “Canonical Ensembles
from Chaos”, Annals of Physics (NY) 204, 155-185 (1990).
[8] A. Bulgac and D. Kusnezov, “Canonical Ensemble Averages
from Pseudomicrocanonical Dynamics”, Physical Review A
42, 5045-5048 (1990).
[9] P. K. Patra and B. Bhattacharya, “Non-Ergodicity of Nosé-
Hoover Chain Thermostat in Computationally Achievable
Time”, Physical Review E 90, 043304 (2014) = arχiv:
1407.2353 (2014).
[10] Wm. G. Hoover and C. G. Hoover, “Ergodicity of a Time-
Reversibly Thermostated Harmonic Oscillator and the 2014
Ian Snook Prize”, Computational Methods in Science and
Technology 20, 87-92 (2014).
[11] W. G. Hoover, J. C. Sprott, P. K. Patra, and C. G. Hoover, “De-
terministic Time-Reversible Thermostats: Chaos, Ergodicity,
and the Zeroth Law of Thermodynamics”, arχiv 1501.03875
(2015), Molecular Physics (in press).
[12] H. A. Posch, W. G. Hoover, and F. J. Vesely, “Canonical Dy-
namics of the Nosé Oscillator: Stability, Order, and Chaos”,
Physical Review A 33, 4253-4265 (1986).
[13] W. G. Hoover and H. A. Posch, “Direct Measurement of Equi-
librium and Nonequilibrium Lyapunov Spectra”, Physics Let-
ters A 123, 227-230 (1987).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_23_2_2017_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST