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Abstract: Nosé and Hoover’s 1984 work showed that although Nosé and Nosé-Hoover dynamics were both consistent
with Gibbs’ canonical distribution neither dynamics, when applied to the harmonic oscillator, provided Gibbs’ Gaussian
distribution. Further investigations indicated that two independent thermostat variables are necessary, and often sufficient,
to generate Gibbs’ canonical distribution for an oscillator. Three successful time-reversible and deterministic sets of two-
thermostat motion equations were developed in the 1990s. We analyze one of them here. It was developed by Martyna, Klein,
and Tuckerman in 1992. Its ergodicity was called into question by Patra and Bhattacharya in 2014. This question became the
subject of the 2014 Snook Prize. Here we summarize the previous work on this problem and elucidate new details of the
chaotic dynamics in the neighborhood of the two fixed points. We apply six separate tests for ergodicity and conclude that the
MKT equations are fully compatible with all of them, in consonance with our recent work with Clint Sprott and Puneet Patra.
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I. DETERMINISTIC TIME-REVERSIBLE
THERMOSTATS AND ERGODICITY

In 1984 Shuichi Nosé discovered a canonical dynam-
ics [1, 2] consistent with Willard Gibbs’ canonical phase-
space distribution. Hoover [3] used a generalization of Liou-
ville’s flow equation to develop a “Nosé-Hoover dynamics”,
a simpler variation on Nosé’s work. He pointed out that nei-
ther approach gave Gibbs’ complete canonical distribution
for the simple harmonic oscillator problem:

H(q, p) = [ (q2/2) + (p2/2) ] −→ f(q, p) ∝ e−q
2/2e−p

2/2

[Gibbs′ Canonical Distribution].

In the 1990s three generalizations of this work were devel-
oped [4-6] to remedy the stiffness and the lack of ergodicity
that resulted when Nosé’s ideas were applied to the harmonic
oscillator. All three of them include two “thermostat” vari-
ables, { ζ, ξ }, which control the motion of the oscillator
coordinate and momentum { q, p }, steering it toward the
canonical distribution. The generalized motion equations all

satisfy an analog of the hydrodynamic continuity equation,
(∂ρ/∂t) = −∇ · (ρu). The stationary (steady-state) version
of this phase-space flow equation is:

(∂f/∂t) = 0 =

=− (∂fq̇/∂q)− (∂fṗ/∂p)− (∂fζ̇/∂ζ)− (∂fξ̇/∂ξ).

For all three flow models the probability density f(q, p, ζ, ξ)
is stationary when it includes Gaussian distributions for the
two new thermostat variables, ζ and ξ.

As a result there are at present three sets of four ordinary
differential motion equations all of which provide the full
canonical distribution for an oscillator along with Gaussian
distributions for the additional thermostat variables {ζ, ξ}:

{ṗ = −q− ζp− ξp3; ζ̇ = p2 − 1; ξ̇ = p4 − 3p2} [HH] [4];

{ṗ = −q− ζ3p− ξp3; ζ̇ = p2− 1; ξ̇ = p4− 3p2} [JB] [5];

{ṗ = −q − ζp; ζ̇ = p2 − 1− ξζ; ξ̇ = ζ2 − 1} [MKT] [6].



6 Wm.G. Hoover, C.G. Hoover

In each of the three sets a fourth equation, the definition,
q̇ = p , is also to be included. Each of them displays a “mir-
ror” or “inversion” or “rotational” symmetry in the (q, p)
plane: any solution { +q(t),+p(t), ζ(p), ξ(t) } has a mirror
image when the oscillator is viewed in a mirror perpendicular
to the q axis. The solution viewed in the mirror replaces both
+q and +p by their mirror images, −q and −p. In the mir-
ror solution, { −q(t),−p(t), ζ(p), ξ(t) }, the time-dependent
thermostat variables ζ and ξ are unchanged.

There are also generalizations of each of these ideas based
on controlling more, or different, moments of the canonical
distribution function. [7, 8] In addition, a variety of different
solutions result for thermostat relaxation times other than
unity, for coordinate-dependent temperature profiles, and for
more complicated potentials.

In addition to the canonical oscillator probability
∝ e−q2/2e−p2/2 the thermostat variables (ζ, ξ) also have
Gaussian distributions:

fHH = fMKT ⊃ e−ζ
2/2e−ξ

2/2; fJB ⊃ e−ζ
4/4e−ξ

2/2.

Patra and Bhattacharya [9] investigated the (q, p) phase-
space density in the vicinity of an unstable fixed point
(q, p, ζ, ξ) = (0, 0,−1,+1) of the MKT equations. They
displayed an apparent low-probability region there and sug-
gested that the MKT equations were not ergodic. Because
any lack of ergodicity would contradict Martyna, Klein, and
Tuckerman’s belief in the ergodicity of their own model, we
established the 2014 Snook Prize [10] as a reward for the
most convincing work demonstrating either ergodicity or its
lack. In January 2015 we awarded the prize to the authors of
Reference 11.

Here we clarify the differing conclusions of References
9 and 11 by exploring six aspects of the chaotic dynamics
and stationary measure of the MKT equations. These include
[A] the moments of the measure, [B] the largest Lyapunov
exponent, [C] the two fixed points of the flow, [D] the at-
tractor/repellor dynamics near the two fixed points, [E] the
measure in the neighborhood of these fixed points, and [F] the
symmetry of the measure in the neighborhoods of 81 lattice
points arranged in a four-dimensional phase-space lattice. Our
description of the underlying analysis and numerical work
makes up the following Section II. Our Conclusions follow
in the Summary Section III.

II. INVESTIGATING ERGODICITY: THE MKT
HARMONIC OSCILLATOR

Ergodicity, with any dynamical trajectory coming close
to all phase-space states, became an issue with the study of
the one-thermostat Nosé-Hoover oscillator [3, 12]:

q̇ = p; ṗ = −q − ζp; ζ̇ = p2 − 1.

This model exhibits a variety of regular solutions. Most tra-
jectories correspond to two-dimensional tori in the three-
dimensional (q, p, ζ) phase-space. About five percent of the
Gaussian phase-space measure,

(2π)3/2f(q, p, ζ) = e−q
2/2e−p

2/2e−ζ
2/2,

makes up a chaotic sea perforated by the tori [11].
Surprisingly, adding a fourth variable to the phase space

has a tendency to simplify the flow, with the chaotic region
expanding to fill the entire phase space. In what follows we
consider the details of the Martyna-Klein-Tuckerman oscilla-
tor [6]:

{q̇ = p; ṗ = −q−ζp; ζ̇ = p2−1−ξζ; ξ̇ = ζ2−1} [MKT].

All of the numerical work described here was carried out with
the classic fourth-order Runge-Kutta integrator, mostly with
a timestep of 0.001. We consider six different aspects of the
MKT oscillator’s phase-space flow, and show that all of them
are fully consistent with the ergodicity of that model.

II. 1. Moments of the Distribution Function
If MKT dynamics is ergodic then its long-time-averaged

distribution is Gaussian:

f(q, p, ζ, ξ) ∝ e−q
2/2e−p

2/2e−ζ
2/2e−ξ

2/2.

The independence of the four variables implies that the sec-
ond, fourth, and sixth moments are equal to 1, 3, and 15
for each of them. Fig. 1 compares the evolution of all 12
of these moments for the Martyna-Klein-Tuckerman model.
The moments are fully consistent with the ergodic distribu-
tion. The moments are reproduced to an accuracy of about
four significant figures during a simulation of 1012 timesteps.
It should be noted that because the last of the MKT equa-
tions, ξ̇ = ζ2 − 1, forces the longtime value of 〈 ζ2 〉 to be
unity, the (numerical) error of that moment, of order 10−6, is
smaller than that for all the rest. For all the other data, using
a timestep of dt = 0.001 the single-step integration error is of
order 10−17, about the same as double-precision roundoff er-
ror. The number of oscillations represented is about 108, quite
consistent with a random error on the order of the inverse
square root of the number of independent sample oscillations.

II. 2. Chaoticity and the Largest Lyapunov Exponent
Chaos is an essential ingredient of ergodicity. Chaos can

be quantified by measuring the evolution of Lyapunov in-
stability, the ongoing tendency toward the exponentially-
fast separation of neighboring phase-space trajectories. A
steady-state measurement of Lyapunov instability can be im-
plemented by forcing a tethered “satellite” trajectory to follow
the lead of a “reference” trajectory. Both reference and satel-
lite follow exactly the same motion equations but with the
reference-to-satellite separation continually constrained by
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Fig. 1. Typical variation of cumulative second, fourth, and sixth moments of the MKT oscillator. The exact moments, 1, 3, and 15, are
reproduced with four-figure accuracy for simulations describing on the order of 108 vibrations

rescaling its phase-space separation ∆ at the end of every
timestep:

∆t ≡ rs(t)− rr(t); ∆t+dt −→ ∆t+dt

[
|∆t|
|∆t+dt|

]
.

The rescaling of the separation, per unit time, defines the
local Lyapunov exponent λ(t):

λ(t) ≡ (1/dt) ln

[
|∆t+dt|
|∆t|

]
' (1/dt) ln[eλdt] ≡ λ.

The long-time-averaged value of this “local” time-dependent
Lyapunov exponent is the exponent λ:

〈λ(t)〉 ≡ λ '
〈

(1/dt) ln

[
|∆t+dt|
|∆t|

]〉
.

The continuous limit dt → 0 can be imposed by using an
appropriate Lagrange multiplier [13].

 = 0.066λ

-4      <       (t)    <      +4λλ 0    <    <   >    <    0.14λλ0    <    <   >    <    0.14λλ

Fig. 2. Instantaneous values of the Lyapunov exponent (on the left)
and a histogram of integrated million-timestep averages (on the
right). The Gaussian distribution at the right is drawn with the ob-
served mean and standard deviation and is a near-perfect fit to the
data. These are probability densities so that the vertical scales are

set by normalization

Fig. 2 compares a histogram of 10,000 values of the
instantaneous “local” exponent λ(t), separated by 1000
timesteps with dt = 0.001, to a histogram of integrated
averages. Each averaged exponent represents one million
timesteps, ∆t = 1000. The reference-to-satellite offset vec-
tor ∆ has a length 0.000001. The time averages have a mean
and standard deviation:

〈λ(t)〉∆t=1000 = 0.066± 0.011.

If the distribution were Gaussian the probability of finding
a vanishing integrated exponent in a million trials would be
about e−18 ' 10−8. The Gaussian shown in the Fig. leads to
two conclusions: [1] one million timesteps are clearly suffi-
cient for the Central Limit Theorem to apply, so that [ 2 ] the
likelihood of finding a false-negative time average is indeed
about one in 100 000 000. For all three of the time-reversible
harmonic oscillator thermostat models, HH, JB, and MKT,
samples of one million time-averaged Lyapunov exponents
were examined [11]. The initial conditions were chosen ran-
domly from the four-dimensional stationary distributions. The
data were consistent with chaos and with the absence of regu-
lar toroidal trajectories (which would correspond to vanishing
Lyapunov exponents). These Lyapunov exponent investiga-
tions establish that the measure of any nonergodic component
is less than 0.000001.

II. 3. Analysis Near the Two MKT Fixed Points:
(0,0,-1,+1) and (0,0,+1,-1)

The MKT oscillator has two separated fixed points where
the coordinate and momentum vanish, q = p = 0. The ther-
mostat variables are (ζ, ξ) = (−1,+1) or (+1,−1). The ap-
parent ergodicity of the oscillator implied by the Gaussian
moments and the positive Lyapunov exponent suggests that
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neither fixed point is stable. To show that both are actually
exponentially unstable we linearize the equations of motion
about the fixed points by considering a perturbation vector
δ = (δq, δp, δζ , δξ).

We begin with the fixed point singled out for analysis by
Patra and Bhattacharya [9] (q, p, ζ, ξ) = (0, 0,−1,+1):

δ̇q = δp; δ̇p = −δq + δp; δ̇ζ = δξ − δζ ; δ̇ξ = −2δζ .

Another time differentiation provides the separated equations
of motion for the perturbations in the (q, p) and (ζ, ξ) planes.
The (q, p) perturbations are linearly unstable, both in the
same manner:

δ̈q = −δq + δ̇q; δ̈p = −δp + δ̇p.

The perturbations in the (ζ, ξ) plane are stable, again in the
same manner:

δ̈ζ = −2δζ − δ̇ζ ; δ̈ξ = −2δξ − δ̇ξ.

Evidently the (ζ, ξ) flow toward this fixed point complements
the corresponding Lyapunov-unstable exit flow in the (q, p)
plane.

Exactly similar analysis can be carried out at the other
fixed point (q, p, ζ, ξ) = (0, 0,+1,−1):

δ̇q = δp; δ̇p = −δq − δp; δ̇ζ = −δξ + δζ ; δ̇ξ = +2δζ .

This time perturbations (δq, δp) in the (q, p) plane are linearly
stable rather than unstable, and both in the same manner:

δ̈q = −δq − δ̇q; δ̈p = −δp − δ̇p.

In parallel, the perturbations in the (ζ, ξ) plane are unstable:

δ̈ζ = −2δζ + δ̇ζ ; δ̈ξ = −2δξ + δ̇ξ.

In summary, both the fixed points are exponentially unstable,
with stable entrance and unstable exit flows balancing in the
steady state.

In addition to the mirror symmetry mentioned in the first
Section all three sets of thermostated oscillator equations ex-
hibit a time-reversal symmetry in which the signs of (p, ζ, ξ)
and the time all change while that of the coordinate q does not.
This symmetry implies that the attractors and repellors change
roles in the time-reversed dynamics, with damped stable oscil-
lation reversed to give unstable divergent oscillation and vice
versa. In either case the oscillator equation δ̈q = −δq±δ̇q cor-
responds to successive amplitude changes larger or smaller
by a factor 6.1. The parallel thermostat equation near the
(ζ, ξ) fixed points, δ̈ζ = −2δζ ± δ̇ζ corresponds to successive
amplitude changes of a factor of 3.3 at the control variable’s
turning points, smaller because the characteristic frequency
of these thermostat variables is greater.

Fig. 3. (q, p) data are plotted for values close to the “attractor” (left)
and “repellor” (right) values of (ζ, ξ) =(−1,+1) and (+1,−1).
The middle panel shows (ζ, ξ) data for (q, p) values close to (0, 0).
Both “fixed points” are exponentially unstable. The ranges shown

for all four variables are from −4 to +4

Evidently the (q, p) flow toward the fixed point (0, 0)
competes with the exit unstable flow in the (ζ, ξ) plane. One
might expect that exponential divergence would overwhelm
the exponential slowing. In order better to understand the
fixed point flows we collect trajectory points in three thin
four-dimensional slabs centered on (q, p) = (0, 0) and on
(ζ, ξ) = (−1,+1) and (+1,−1). The thickness of the three
slabs are all 10−5/2. See Fig. 3. The two cross-sectional views
of (q, p) look precisely similar at the two (ζ, ξ) “fixed points”.
While q and p are both small (corresponding to a measure
of 0.00001) the (ζ, ξ) flow parallels the curve joining the
two fixed points and emphasized in the center of the Figure.
The relatively lengthy (ζ, ξ) excursions correspond to much
smaller (q, p) tracks. In the thin slabs with ζξ ' −1, the coor-
dinate changes by more than a factor of six between crossings,
and the amplitude of the (q, p) motion is much less. These
two effects are responsible for the misleading appearance
of “holes” in the (q, p) projections. We will soon show that
the density in the full four-dimensional (q, p, ζ, ξ) space is
actually completely uniform near both of the fixed points. It
is simply the jumps in q coupled with the slow flow in p that
accounts for the low-density appearance emphasized by Patra
and Bhattacharya [9].

II. 4. Exponential Motion Near the Fixed Points
Near the two fixed points the flow is dominated by the

source-to-sink S-curve shown in the central panel of Fig. 3
and well approximated by the (ζ, ξ) projection in the right
panel of Fig. 4. It is educational to confirm the linear stability
analysis by considering the flow shown in Fig. 4, starting very
near the (ζ, ξ) “source” and (q, p) “sink”:

(q, p, ζ, ξ) =
(
10−12, 10−12,+1 + 10−12,−1− 10−12

)
.

At the right in Fig. 4 we plot the (q, p) and (ζ, ξ) trajectories.
From a visual standpoint the (ζ, ξ) trajectory leaves the repel-
lor at a time just past 40 and quickly moves to the attactor,
settling there near a time 60, and remaining there until just
past 140. During all that time the (q, p) coordinates appear
motionless. Their distance from the origin corresponds to the
heavy line in the left panel. The distance to the (ζ, ξ) repel-
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lor is the light line there. The medium left-panel line is the
distance to the (ζ, ξ) attractor reached near time 60.

After a time of 148 chaos ensues and the linear stability
analysis visible in the left panel no longer applies. The os-
cillator and thermostat plane trajectories in the right panel
are typical and show that the (q, p) motion is slower and less
vigorous than the (ζ, ξ) motion.
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Fig. 4. The left panel shows the (q, p) and (ζ, ξ) separations from
(0, 0) and (∓1,±1) for a simulation started very near (0,0,+1,-1).
The heavy blue line shows the (q, p) separation, nearly invisible
until a time of 140, then spiraling away from the origin while the
light and medium red lines show that the (ζ, ξ) track travels from
the repellor (along the light line) and toward the attractor (medium)
by a time of 60, remaining near there until visible chaos ensues at

time 140

II. 5. Probability Density Near the Two Fixed Points
In Fig. 5 we plot (on logarithmic scales) the number of

points out of 1010 (lower curve), 1011, and 1012 (upper curve)
lying within a distance r of the two fixed points, with ln(r)
ranging from -5 to + 2. Because d ln(r) = (dr/r) the density
in four-dimensional space should vary as r4 rather than r3,
which it does, very accurately. The measure at the fixed points
is equal to (1/4π2e)dqdpdζdξ. Because the volume of a four-
dimensional sphere of radius r is (π2r4/2) the probability
of finding a trajectory point near one of the two fixed points
within the smallest radius r = e−5 is e−21/8 ' 9 × 10−11,
explaining why such points occur rarely even on a 1012-point
trajectory, as is shown in the Figure.

II. 6. Grid-Based Measures
We can also confirm the Gaussian solution of the MKT

equations by computing the measures of 81 four-dimensional
nonoverlapping balls of radius 0.50 arranged on a hypercubic
3× 3× 3× 3 grid centered on the origin. The measures of
the balls are inversely proportional to the number of nonzero
exponents. The ball at the origin has none. There are re-
spectively 8, 24, 32, and 16 balls with their centers having
1, 2, 3, and 4 nonvanishing exponents. A simulation with
1011 timesteps gave measures of 0.00719, 0.00445, 0.00276,
0.001706, 0.001056 for the five ball types. Each of these
measures is close to 0.620 times that of its predecessor, as ex-
pected for product measures of four independent Gaussians.
The two of the 81 balls centered on the dynamics’ unsta-
ble fixed points show nothing out of the ordinary in their
measures relative to the other 22 two-exponent balls. This sta-

tistical test, which could be refined indefinitely in complexity,
is, like all the rest, consistent with ergodicity of the MKT
oscillator equations.
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Fig. 5. The number of trajectory points in the vicinity of the attrac-
tor and repellor are shown for simulations of 1010, 1011, and 1012

points. The two curves for each simulation are only distinguishable
for small r where their fluctuations are visible. The data are consis-
tent with a Gaussian density and show that the slope near 4 persists

up to spherically-averaged r values of order unity

III. SUMMARY

The thermostated oscillator model introduced by Martyna,
Klein, and Tuckerman, and explored here in more detail, is
one of three simple systems exhibiting a smooth Gaussian
distribution accompanied by a complex chaotic dynamics. All
three are important from the pedagogical standpoint, and are
also useful as thermostats generating all of Gibbs’ canonical
distribution.

Here we have summarized the (compelling) evidence for
the ergodicity of the MKT oscillator in order to close out the
competition for the 2014 Snook Prize. We have used six dif-
ferent and independent methods to assess the ergodicity of the
MKT oscillator: [1] the moments of the Gaussian distribution;
[2] the chaos, as opposed to regularity, of billions of inde-
pendent trajectories; [3] the instability of the flows near both
fixed points; [4] the exponentially growing separation from
both fixed points; [5] the uniform probability density in the
vicinity of these unstable fixed points and [6] the expected
relative measures within a set of 81 hyperspheres centered on
the lattice nodes of a four-dimensional hypercubic lattice.

All of these methods reach the same conclusion, that so-
lutions of the coupled equations are ergodic. We hope that
this summary article will prove useful to investigators of
ergodicity in other simple dynamical systems.

In view of the very intricate Lyapunov instability of the
Martyna-Klein-Tuckerman system this ergodic Gaussian dis-
tribution is outstanding in its simplicity. In view of the contri-
butions of Puneet Patra and Clint Sprott to the understanding
of this problem we have divided the 2014 Snook Prize equally
among ourselves and themselves. We intend to formulate an-
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other Snook Prize problem in the summer of 2015 and would
be very grateful for suggestions from the readers. We thank
Puneet Kumar Patra and Julien Clinton Sprott for helpful
support and Ben Leimkuhler and Mark Tuckerman for stimu-
lating comments.
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