• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 20 (3) 2014, 101-108

Cost-Effective and Sufficiently Precise Integration Method Adapted to the FEM Calculations of Bone Tissue

Mazur Katarzyna *, Dąbrowski Leszek **

Faculty of Mechanical Engineering, Gdansk University of Technology
Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
E-mail: ∗ katarzyna.mazur@pg.gda.pl, ∗∗ldabrows@pg.gda.pl

DOI:   10.12921/cmst.2014.20.03.101-108

Abstract:

The technique of Young’s modulus variation in the finite element is not spread in biomechanics. Our future goal is to adapt this technique to bone tissue strength calculations. The aim of this paper is to present the necessary studies of the element’s integration method that takes into account changes in material properties. For research purposes, a virtual sample with the size and distribution of mechanical properties similar to these in a human femoral wall, was used. WinPython, an environment of Python programming language was used to perform simulations. Results with the proposed element were compared with ANSYS element PLANE42 (with constant Young modulus). The modeled sample was calculated with five different integration methods at five different mesh densities. Considered integration methods showed a very high correlation of results. Two-point Gauss Quadrature Rule proved to be the most advantageous. Results obtained by this method deviate only slightly from the pattern, while the computing time was significantly lower than others. Performed studies have shown that accuracy of the solution depends largely on the mesh density of the sample. Application of the simplest integration method in combination with four times coarser mesh density than in ANSYS with a standard component still allowed to obtain better results.

Key words:

bone, FEM, variable Young’s modulus

References:

[1] J-H. Kim, G. H. Paulino, Isoparametric Graded Finite Ele-
ments for Nonhomogeneous Isotropic and Orthotropic, Jour-
nal of Applied Mechanics 69(4), 502-514 (2002).
[2] J-H. Kim, G. H. Paulino, T-stress in orthotropic functionally
graded materials: Lekhnitskii and Stroh formalisms, Interna-
tional Journal of Fracture 126(4), 345-384 (2004).
[3] L. Grassi, E. Schileo, F. Taddei, L. Zani, M. Juszczyk, L.
Cristofolini, M. Viceconti, Accuracy of finite element predic-
tions in sideways load configurations for the proximal human
femur, Journal of Biomechanics 45(2), 394-399 (2012).
[4] R. Fedida, Z. Yosibash, Ch. Milgrom, L. Joskowicz, Femur
mechanical stimulation using high-order FE analysis with
continuous mechanical properties, II International Confer-
ence on Computational Bioengineering (2005).
[5] K. Mazur, L. Dabrowski, Young’s Modulus Distribution In
The Fem Models Of Bone Tissue, National Conference on Ap-
plications of Mathematics in Biology and Medicine (2013).
[6] E. Błazik-Borowa, J. Podgórski, Introduction to the finite ele-
ment method in static of engineering structures, IZT, Lublin
2001.
[7] W.P. Martins, Questionable value of absolute mean gray
value for clinical practice, Ultrasound in Obstetrics & Gyne-
cology 41(5), 595-597 (2013).
[8] D.Ch. Wirtz, N. Schiffers, T. Pandorf, K. Radermacher, D.
Weichert, R. Forst, Critical evaluation of known bone ma-
terial properties to realize anisotropic FE-simulation of the
proximal femur, Journal of Biomechanics 33(10), 1325-1330
(2000).
[9] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method,
Butterworth-Heinemann, Oxford 2000.

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    x-default
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST