• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 28 (4) 2022, 123–131

Asymptotic Properties of Stieltjes Constants

Maślanka Krzysztof

Polish Academy of Sciences
Institute for the History of Sciences
Nowy Świat 72, 00-330 Warsaw, Poland

E-mail: krzysiek2357@gmail.com

Received:

Received: 12 September 2022; revised: 9 November 2022; accepted: 9 November 2022; published online: 10 November 2022

DOI:   10.12921/cmst.2022.0000021

Abstract:

We present a new asymptotic formula for the Stieltjes constants which is both simpler and more accurate than several others published in the literature (see e.g. [1–3]). More importantly, it is also a good starting point for a detailed analysis of some surprising regularities in these important constants.

Key words:

Nørlund-Rice integral, saddle point method, Stieltjes constants

References:

[1]  C. Knessl, M.W. Coffey, An Effective Asymptotic Formula for  the  Stieltjes  Constants,  Mathematics  of  Computation 80(273), 379–386 (2011).

[2] L. Fekih-Ahmed, A New Effective Asymptotic Formula for the Stieltjes Constants, arXiv:1407.5567v3 (2014).

[3]  R.B. Paris, An Asymptotic Expansion for the Stieltjes Constants, Mathematica Aeterna 5, 707–716 (2015).

[4] K. Maślanka, M. Wolf, Are the Stieltjes constants irrational? Some computer experiments, Computational Methods in Science and Technology 26(3), 77–87 (2020).

[5]  K. Maślanka, A. Koleżyński, The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm, Computational Methods in Science and Technology 28(2), 47–59 (2022).

[6] Wikipedia, Stieltjes constants, https://en.wikipedia.org/wiki/Stieltjes_constants.

[7] Wolfram MathWorld, Lambert W-Function, https://math world.wolfram.com/LambertW-Function.html.

[8] Wolfram MathWorld, Stirling Number of the First Kind, https://mathworld.wolfram.com/StirlingNumberoftheFirstKi nd.html.

[9] P. Flajolet, R. Sedgewick, Mellin transforms and asymptotics: Finite differences and Rice’s integrals, Theoretical Computer Science 144, 101–124 (1995).

[10] D.E. Knuth, The Art of Computer Programming 3: Sorting and Searching, Addision-Wesley, Reading, MA (1998).

[11] N.E. Nørlund, Vorlesungen über Differenzenrechnung, Springer, Berlin (1924). Reprinted: Chelsea Publishing Company, New York (1954).

[12] H.M. Edwards, Riemann’s Zeta Function, Dover Publications (2001).

[13] P. Flajolet, L. Vepstas, On Differences of Zeta Values, arXiv:math/0611332v2 (2007).

[14] A. Erdélyi, Asymptotic Expansions, Dover Publications (1956).

[15] Wolfram Research, Inc., Mathematica, Version 13.1, Champaign, Illinois (2022).

[16] A. LeClair, An electrostatic depiction of the validity of the Riemann Hypothesis and a formula for the N-th zero at large N, arxiv:1305.2613v5 (2013).

[17] A. Jasiński, https://oeis.org/A114523; https://oeis.org/A114 524, [In:] N. Sloan, The On-Line Encyclopedia of Integer Sequences.

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_26_4_2020_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST