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Abstract: We present a new asymptotic formula for the Stieltjes constants which is both simpler and more accurate than
several others published in the literature (see e.g. [1–3]). More importantly, it is also a good starting point for a detailed
analysis of some surprising regularities in these important constants.
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Mathematicians should look anew at old concepts
in solitude and in absolute childlike innocence.

Alexandre Grothendieck (1928–2014)
Récoltes et Semailles (unpublished text)

I. Introduction

The Stieltjes constants γn are essentially coefficients of
the Laurent series expansion of the Riemann zeta function
around its only simple pole at s = 1:

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)
n

n!
γn (s− 1)

n
. (1)

It is commonly believed that they are irrational, even
transcendental, numbers but no rigorous proof of this has
been given [4]. High precision numerical computations of
them are quite a challenge (see [5] and references therein).
A common and frequently cited view is that “for large n,
the Stieltjes constants grow rapidly in absolute value, and
change signs in a complex pattern” [6]. The first view is be-
yond any doubt, as illustrated in Fig. 1 below.

In this paper, however, we will show that the second view
is incorrect: not only the signs of the Stieltjes constants, but
also their values show amazing regularities.

There are three asymptotic formulas for these constants
in the literature [1–3]. We believe that the one presented in
this paper is definitely simpler than the others. It is also more

Fig. 1. Absolute values of 150 initial Stieltjes coefficients γn.
The global and fast growing trend is evident. Oscillations of in-
creasing amplitude and decreasing frequency superimposed on this
trend are visible. Red dots mean positive values, blue dots mean

negative values. The scale on the vertical axis is logarithmic

accurate. In particular, it recreates correctly the sign of γn
for the particular value of n = 137, which is usually trouble-
some for asymptotic formulas. Most importantly, this for-



124 K. Maślanka

mula can be a starting point for the analysis of the above-
mentioned surprising regularities of Stieltjes constants:

γn ∼
√

2

π
n! Re

Γ (sn) e
−csn

(sn)
n
√
n+ sn + 3

2

, (2)

where sn is the saddle point (see below):

sn =
n+ 3

2

W
(

n+ 3
2

2πi

) . (3)

In formula (2) c ≡ ln (2πi) is a complex constant and W is
the Lambert function (sometimes called the omega function
or product logarithm, see [7]).

The basic tool is, as usual in such computations, the sad-
dle point method whereas the starting point is a certain alter-
nating sum, which, due to the still little known Nørlund-Rice
formula, can be converted into an integral over the complex
contour. As will be shown subsequently, global properties of
this integral clearly suggest using the saddle point method.

II. Algorithm for Calculating Stieltjes Constants

This work is a natural continuation of the previous one
[5]. In that work, certain numerically efficient formula for
Stieltjes constants was given. In the present work, we will
use this formula to derive a new, effective formula for
asymptotics for these important constants. As it was done
in [5], we will use polynomial interpolation for the (regular-
ized) Riemann zeta function φ(s):

φ(s) :=

{
ζ(s)− 1

s−1 , s ̸= 1,

γ, s = 1,
(4)

where γ is the Euler constants which stems from the appro-
priate limit. In the mentioned interpolation, certain coeffi-
cients αk appear naturally, defined as follows:

ak(ε) =

k∑
j=0

(−1)
j

(
k

j

)
φ(1 + jε), (5)

where ε is a certain real, not necessarily small number.
(For simplicity, in what follows we shall generally drop thls
dependence in denotations: ak(ε) ≡ ak.) Then, after some
elementary computations, we get:

γn = n!
εn

∞∑
k=n

(−1)kak

k! S
(n)
k = (−1)n n!

εn

∞∑
k=n

ak

k!

∣∣∣S(n)
k

∣∣∣ ,
(6)

where S
(n)
k are signed Stirling numbers of the first kind

(see [8]). Formula (6) is particularly well-suited for numeri-
cal computations provided one has precomputed equidistant,
high precision values of φ(s) in s = 1, 1 + ε, 1 + 2ε, . . .
(See paragraph IV of [5] for all details.)

III. Behavior of Coefficients ak

Formula (5) has a special form of an alternating sum with
binomial coefficients. This form suggests using the Nørlund-
Rice integral which is a powerful tool for dealing with such
sums. (see e.g. [9]).

Lemma 1. Let φ(s) be holomorphic in the half-plane
ℜ(s) ≥ n0 − 1

2 . Then the finite differences of the sequence
{φ(k)} admit the integral representation:

n∑
k=n0

(−1)
k

(
n
k

)
φ(k) =

(−1)
n

2πi

∮
C

φ(s)
n!

s(s−1) . . . (s−n)
,

(7)
where the contour of integration encircles the integers
{n0, . . . , n} in a positive direction and is contained in
ℜ(s) ≥ n0 − 1

2 .

Proof. According to the Cauchy residue theorem, the con-
tour integral on the right is the sum of the residues of the
integrand at s = n0, . . . , n which is just equal to sum on the
left1.

Fig. 2. Rectangular contour C of integration for the right hand side
of (7) for particular value k = 5 encircling points 0, 1, . . . , 5. This

shape is especially well suited for numerical investigations

However, before applying the above Lemma it is conve-
nient to make several elementary transformations in (5).

ak = γ +

k∑
j=1

(−1)
j

(
k

j

)
φ(1 + jε) =

= γ +

k∑
j=1

(−1)
j

(
k

j

)
ζ(1 + jε)− 1

ε

k∑
j=1

(−1)
j

j

(
k

j

)
.

The last sum is

k∑
j=1

(−1)
j

j

(
k

j

)
= −γ − ψ(0)(k + 1) = −Hk ,

1 Donald Knuth popularized this formula and attributed it to an American engineer, Stephen O. Rice, a pioneer in the applications of probability techniques
to engineering problems (1907–1986). Knuth did it in one of the problem tasks at the end of one of the chapters of his famous work [10]. However, much
earlier this formula was known to Danish mathematician Niels Erik Nørlund (1885–1981), who included it in his extensive classic treatise [11]. Incidentally,
the mentioned Niels Erik Nørlund was the brother of Margrethe née Norlund, later wife of the famous physicist Niels Bohr.
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where ψ(0)(s) is the polygamma function and Hk ≡
≡
∑k

i=1 1/i is the kth harmonic number. Finally we get:

ak = γ +
Hk

ε
+

k∑
j=1

(−1)
j

(
k

j

)
ζ(1 + jε). (8)

Now, choosing the rectangular contour of integration
(Fig. 1) and applying the above Lemma (7) to (5), we get:

ak =
(−1)

k
k!

2πi

−δ−iδ∫
−δ+iδ

fkds+

k+δ−iδ∫
−δ−iδ

fkds+

k+δ+iδ∫
k+δ−iδ

fkds+

−δ+iδ∫
k+δ+iδ

fkds

,
(9)

where the integrand is:

fk ≡ fk(s, ε) =
φ(1 + sε)
k∏

i=0

(s− i)

,

and φ is the regularized zeta function (4) and δ is the positive
parameter. (Typically δ = 1

2 , see Fig. 2.)
Deforming the rectangular contour of integration to

a vertical line Re s = 1
2 and a large semicircle on the right

and performing the integral along vertical line only, that
is neglecting contribution from the large semicircle, which
tends to zero, we get:

ak =
(−1)

k
k!

2πi

+ 1
2−i∞∫

+ 1
2+i∞

fk(s, ε)ds.

After applying functional equation for the Riemann zeta
function (see e.g. [12], p. 12–16)2:

ζ(1 + sε) = π
1
2+sε Γ(−

sε
2 )

Γ( 1+sε
2 )

ζ(−sε), (10)

we get

ak=γ+
Hk

ε
+
(−1)

k
k!

2πi

+ 1
2−i∞∫

+ 1
2+i∞

π
1
2+sε Γ(− sε

2 )

Γ( 1+sε
2 )

ζ(−sε)
k∏

i=0

(s− i)

ds.

Performing change of variable s→ −s yields:

ak=γ+
Hk

ε
− (−1)

k
k!

2πi

− 1
2+i∞∫

− 1
2−i∞

π
1
2−sε Γ( sε

2 )

Γ( 1−sε
2 )

ζ(sε)

k∏
i=0

(−s− i)

ds.

Using elementary identity valid for integer k:

k∏
i=0

(−s− i) = − (−1)
k

k∏
i=0

(s+ i),

and converting the product on the right into the Pochhammer
symbol usually denoted (s)n:

k∏
i=0

(s+ i) =
Γ (s+ k + 1)

Γ (s)
≡ (s)k+1 ,

we get:

ak=γ +
Hk

ε
+

k!

2πi

− 1
2+i∞∫

− 1
2−i∞

π
1
2−sε Γ( sε2 )

Γ( 1−sε
2 )

Γ (s)

Γ(s+k+1)
ζ(sε)ds.

Now defining the integrand as:

fk(s, ε) = π
1
2−sε Γ( sε2 )

Γ( 1−sε
2 )

Γ (s)

Γ (s+ k + 1)
ζ(sε), (11)

we get

ak=γ+
Hk

ε
+
k!

2πi

− 1
2+i∞∫

− 1
2−i∞

fk(s, ε)ds = (12)

=γ+
Hk

ε
+
k!

2πi

+ 1
2+i∞∫

+ 1
2−i∞

fk(s, ε)ds−2πi Res(fk(s, ε),0)

. (13)

We can finally move the line of integration from Re(s) =
= − 1

2 to Re(s) = + 1
2 and subtract the contribution from

residue of the integrand in s = 0. It turns out that this
residue is:

γε+Hk

εk!
, (14)

which miraculously cancels exactly the first and the second
term in (12)

ak =
k!

2πi

+ 1
2+i∞∫

+ 1
2−i∞

fk(s, ε)ds. (15)

It is convenient to introduce the following notation:

gk(s, ε) ≡ π
1
2−sε Γ( sε2 )

Γ( 1−sε
2 )

Γ (s)

Γ (s+ k + 1)
, (16)

fk(s, ε) = gk(s, ε)ζ(sε).

2 Such a trick to use the functional equation for the Riemann zeta function and then perform change of variable s → −s was inspired by the work [13],
cf. Eqs. (17), (18) and the corresponding comment.
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Fig. 3. Absolute value of the integrand (16) for k = 8 and ε = 2−5.
The vertical scale is logarithmic for better visualisation. The right
half-plane of complex variable s is free of singularities. Simple
poles in s = 0,−1,−2, . . . ,−k due to factor Γ(s) in (16) are

visible

The integrand in (16) has several remarkable features.
It is free of singularities in the right half-plane and decays
there exponentially to zero. Hence, the vertical line of inte-
gration may be freely moved to the right without any change
of the integral. Therefore, the integral is well-suited for ap-
plying the saddle point method. Let us now remind the fol-
lowing important result (see [14] for a very accessible pre-
sentation of this method):

Theorem 2. The saddle-point method (or: Method of steep-
est descent). An integral depending of some real parameter
λmay be approximated for a large value of this parameter as∫
τ(x)eλω(x)dx∼τ(x0)eλω(x0)

√
− 2π

λω′′(x0)
, ω′(x0) = 0.

(17)
(The solution x0 of the equation ω′(x0) = 0 is the saddle
point.)3

In our case the discrete index k plays the role of parame-
ter λ although it is not just the multiplying factor. It is evident
that in order to apply the above theorem to integral (16) one
has to choose τ ≡ 1 and ω = log (fk(s, ε)). More precisely:

ωk(s, ε) ≡ log (fk(s, ε)) . (18)

All the computations below are elementary but very te-
dious, so they were performed and checked with the help of
Wolfram Mathematica [15].

We shall also need the first and second derivative of the
integrand (16) with respect to complex variable s. Having
these we can compute derivatives of ωk(s, ε) as:

∂

∂s
ωk(s, ε) =

∂
∂sfk(s, ε)

fk(s, ε)
≡
f
(1)
k (s, ε)

fk(s, ε)
, (19)

∂2

∂s2
ωk(s, ε) =

∂2

∂s2 fk(s, ε)

fk(s, ε)
−

(
∂
∂sfk(s, ε)

fk(s, ε)

)2

≡

≡
f
(2)
k (s, ε)

fk(s, ε)
−

(
f
(1)
k (s, ε)

fk(s, ε)

)2

.

(20)

Let ψ(s) and ψ(1)(s) denote digamma function and its
first derivative, respectively. Introducing the following deno-
tations:

pk(s, ε) ≡ ψ(s)− ψ(s+ k + 1)+

+
ε

2

(
ψ
(sε
2

)
+ ψ

(
1− sε

2

)
− 2 log(π)

)
,

p
(1)
k (s, ε) ≡ ψ(1)(s)− ψ(1)(s+ k + 1)+

+
(ε
2

)2(
ψ(1)

(sε
2

)
− ψ(1)

(
1− sε

2

))
,

after some elementary but tedious computations we get:

f
(1)
k (s, ε)≡ ∂

∂s
fk(s, ε)=gk(s, ε)

(
pk(s, ε)ζ (εs) + εζ ′(εs)

)
.

(21)
In a similar way we can obtain the second derivative of
fk(s, ε). Introducing denotations:

qk(s, ε) ≡ pk(s, ε)
2 + p

(1)
k (s, ε),

q
(1)
k (s, ε) ≡ 2εpk(s, ε),

we get:

f
(2)
k (s, ε) ≡ ∂2

∂s2
fk(s, ε) =

= gk(s, ε)
(
qk(s, ε)ζ (εs) + q

(1)
k (s, ε)ζ ′(εs) + ε2ζ

′′
(εs)

)
.

(22)
Inserting (21) and (22) into (19) and (20) we get:

∂

∂s
ωk(s, ε) = pk(s, ε)−

πε

2
tan

(πsε
2

)
+ ε

ζ
′
(εs)

ζ (εs)
, (23)

∂2

∂s2
ωk(s, ε) = qk(s, ε)−

(πε
2

tan
(πsε

2

))2
+

+ε2

ζ ′′

(εs)

ζ (εs)
−

(
ζ

′
(εs)

ζ (εs)

)2
 .

(24)

3 Historical digression. We owe the original idea of this method to Pierre Simon de Laplace (1774). Another contribution belongs to Augustin Louis
Cauchy (1829). In Bernhard Riemann’s unpublished notes from 1863, this method is applied to hypergeometric functions. The final version was published
by Peter Debye (1909) who applied this method to Bessel functions. Russian historians of mathematics recently reminded contribution of Pavel Alexeevich
Nekrasov, who (allegedly) discovered and used this method independently a quarter of a century before Debye. I have no opinion on this matter, since
Nekrasov was also a philosopher and used mathematics to demonstrate the necessity of the tsarist regime and the need to maintain secret services.
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Having explicitly calculated derivatives of the integrand
we are ready to apply the saddle point method (17). First we
have to find the location of saddle points. Equating (21) or
(23) to zero gives:

pk(s, ε)ζ (εs) + εζ ′ (εs) = 0. (25)

Note that for variable s having a large imaginary part we
have (cf. e.g. [13], formula (20)):

ζ (s) ∼ 1, (26)

ζ
′
(s) ∼ 0,

ζ
′′

(s) ∼ 0.

The above approximations seem very radical and illegit-
imate, because the zeta function seems to disappear from the
reasoning at this stage. Nevertheless, they are satisfied with
accuracy to many significant digits along the integration path
which, let us recall, can be shifted arbitrarily far to the right.
After all, the zeta is present there, at least by its functional
Eq. (10) which has been used above.

Therefore, instead of (25), we simply get:

3 + 2k + sε

(
2 ln

2π

sε
± iπ

)
= 0. (27)

(One has to be careful with logarithms of complex arguments
so as not to ignore a case and therefore not miss a solution.)
Eq. (27) may be solved explicitly with respect to s giving
the complex location of kth saddle point (for a given small
parameter ε):

sk =
k + 3

2

εW
(
±k+ 3

2

2πi

) , (28)

Fig. 4. The logarithm of the absolute value of the integrand (11)
for k = 2 and ε = 2−4. Positions of saddle points are marked by
vertical lines. The saddle nature of these points is practically in-
visible due to the scale of the figure. Also, three singularities for
s = 0,−1,−2 merged into single peak. Better visualisation is pre-

sented in the next Fig. 5

where W is the Lambert function satisfying transcendental
functional equation:

s =W (s)eW (s).

Incidentally, formula (28) resembles approximate formula
for the imaginary parts yn of complex zeta zeros found by
André LeClair (see [16], formula (22)):

yn = 2π
n− 11

8

W
(

n− 11
8

e

) .
From (28) it is evident that distribution of saddle points on
the complex plane scales as the inverse of parameter ε.

Fig. 5. Typical family of fragments of absolute values of the func-
tion ωk(s, ε) (18) in the vicinity of saddle points for k = 100, 101
and 102. Blue vertical segments mark the position of the saddles.

The red lines are the curves of the steepest descent

IV. Completion of Computations

Having calculated the second derivative of the integrand
and the positions of the stationary points, we can finally
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use the theorem (17) and provide an asymptotic expression
for ak:

ak(ε) ≃ −Re

(
k!

πi

√
2π

− ∂2

∂s2ωk(sk, ε)
fk(sk, ε)

)
. (29)

To get the sought asymptotic formula for γn coefficients,
all that remains is to insert (29) into the general expression
(6) and make some elementary approximations. (As always,
Mathematica procedures such as Limit, Series, etc. save a lot
of time and effort while ensuring that the results are error
free.) In particular:

∂2

∂s2
ωk(sk, ε) ≃

3 + 2k

2s2
+
ε

s
− π2ε2

4

(
1 + tan

(πsε
2

)2)
.

(30)
Using (26) we can also put:

fk(s, ε) ≃ gk(s, ε). (31)

Remembering that for a large imaginary part of s

Γ(s) ≃
√

2π

s
e−sss ,

cos(s) ≃ e−is

2
,

we have:

gk(s, ε) ≃
1

2
π

1
2−sεs−k−2

(
2s− k − k2

) Γ( sε2 )

Γ( 1−sε
2 )

. (32)

It is clear that, since finally ε tends to zero, it is sufficient to
take only the first term in (6)

γn ≃ ak(ε)

εn
, ε→ 0. (33)

Inserting to (33) expression for ak(ε) (29) together with (30),
(31) and (32) we finally get:

γn ∼
√

2

π
n! Re

Γ (sn) e
−csn

(sn)
n
√
n+ sn + 3

2

.

(In fact, there is always a pair of mutually conjugate saddles
but contributions due to their imaginary parts cancel.)

It is probably quite astonishing that after making so many
approximations the final formula for γn works so well as
computer experiments show convincingly. As expected, in
this formula there is no longer the auxiliary parameter ε,
which fulfilled its important but temporary role in numeri-
cal computations (with the help of formula (6)), and finally
simply get shortened.

V. Summary of Results

Let’s collect the final results. Let c be a complex con-
stant:

c = log(2π) +
π

2
i = log(2πi).

Now asymptotics of Stieltjes constants when n → ∞
(in practice it suffices that n≫ 0) is:

γn ∼
√

2

π
n! Re

Γ (sn) e
−csn

(sn)
n
√
n+ sn + 3

2

, (34)

where complex saddle points are (note that now there is no
ε which get shortened):

sn =
n+ 3

2

W
(
±n+ 3

2

2πi

) . (35)

The 250 initial values of the complex saddles (35) are shown
in Fig. 6. Very good agreement of approximated values cal-
culated using (34) with actual values of γn is shown in Fig. 7.

Fig. 6. Distribution of 250 initial saddle points on the complex
plane. There are two symmetrical branches: the lower one is the

complex conjugate of the upper one

Fig. 7. Comparison of absolute values of actual Stieltjes coefficients
(green dots) with those calculated from asymptotic formula (34)
(red dots) shows good agreement (except γ0), even for that “un-

ruly” value n = 137
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Fig. 8. Unfortunately, the good impression after looking at Fig. 7
diminishes a bit when we look at the graph of the ratio of the ex-
act γn values to the asymptotic values (34), for example, in the
range of n ∈ [3000, 3300]. Although this ratio is very close to
one, with an accuracy generally better than 10−4, there are distinct,
periodic structures: points are arranged on certain curves resem-
bling the family of cotangent functions. But it is in these structures
that the essence of Riemann’s zeta is contained, including the Rie-
mann hypothesis, i.e. what was rejected when the approximations
(26) were made. Also note, which is somewhat surprising, that the
blue points lie slightly above the red straight line that represents the
value of one. But, as the saying goes, when one door shuts, another
one opens. And indeed, this result opens up a whole new field for
very fruitful research on the Stieltjes constants, which will be the

subject of the next publication

VI. Application: Signs of γn

As a by-product of these intricate computations, we can
get a compact expression for the signs of the Stieltjes con-
stants. Formula (34) hides the characteristic behavior of
Stieltjes constants when n grows, that is large and growing
oscillations with diminishing frequency superimposed on the
strongly growing trend. This behavior may be demonstrated
as follows. Recall higher order Stirling formula for Γ(x):

Γ(x) ≃ 1

6

√
π

2
e−xxx−

3
2 (12x+ 1).

Applying it to Γ (sn) in (34) we get:

γn ≃ 2n! Re
(sn)

sn−n− 3
2 (sn + 1

12 )e
−(c+1)sn√

n+ sn + 3
2

. (36)

For n ≫ 1 fractions 1
12 and 3

2 under the square root may be
neglected since sn grows fast with n:

γn ≃ 2n! Re
(sn)

sn−n− 1
2 e−(c+1)sn

√
n+ sn

=

=2n! Re
exp

[
(sn − n− 1

2 ) ln (sn)
]
e−(c+1)sn

exp
[
1
2 ln (n+ sn)

] =

=2n!Re exp

[
(sn−n−

1

2
)ln(sn)−

1

2
ln(n+sn)−(c+1)sn

]
.

Applying once again the Stirling formula to n! we have:

γn ≃
√
8πRe exp

[
1

2
ln(n) + n (ln(n)− 1)+

+(sn − n− 1

2
) ln (sn)−

1

2
ln (n+ sn)− (c+ 1)sn

]
.

(37)
Introducing finally the complex “phase” as:

φn ≡ 1

2
ln(8π)− n+ (n+

1

2
) ln(n)+

+(sn − n− 1

2
) ln (sn)−

1

2
ln (n+ sn)− (c+ 1)sn ,

(38)
we get a particularly simple expression:

γn ≃ Re [eφn ] = eReφn cos (Imφn) . (39)

Formula (39) gives almost as good approximation as (34)
but it shows in a manifest way mentioned above basic prop-
erties of γn (trend and oscillations). It is then clear that the
statement quoted in the beginning that “Stieltjes constants
(...) change signs in a complex pattern” [6] is not true. In par-
ticular, one can quickly calculate sign of γn, even for ex-
tremely high n, since it is obviously equal to the sign of
cos (Imφn) and the phase (38) can be computed effectively
for n at least up to 101,000,000. (See [17] for extensive com-

Fig. 9. Distribution of complex values of phase φn given by (38)
for n = 1, 2, . . . , 100. It is clear that thay lie along certain smooth
curve. It is also obvious that the exponent of the real part of the
phase (38) controls the rapid growth of γn, while the cosine of the
imaginary part of the phase is responsible for the oscillations of de-

creasing frequency
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putations of signs of Stieltjes constants using the above for-
mulas.) For example:

n sign of γn

1010 +1

10100 +1

101000 +1

1010 000 −1

10100 000 −1

101,000 000 +1
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Appendix: Samples of Mathematica Notebooks

As mentioned in the main text, Wolfram’s Mathematica [15] made very tedious and convoluted computations much easier
and ensured that there were no mistakes in them. This program was used very intensively – for symbolic transformations and
in terms of its enormous purely numerical capabilities and finally for its rich graphical presentations of the obtained results.
Fig. A1 is an example of how well Mathematica is doing to check that the contour integral (9) is indeed equal to the binomial
alternating sum (8). I cannot imagine how to verify this fact with such high precision without computer support. Another
example: Fig. A2 shows how Mathematica solves the transcendental Eqs. (27).
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Fig. A1. Checking the Nørlund-Rice formula (7) using Mathematica

Fig. A2. Illustration of the Solve procedure capabilities applied to Eqs. (27)

CMST 28(4) 123–131 (2022) DOI:10.12921/cmst.2022.0000021


	Introduction
	Algorithm for Calculating Stieltjes Constants
	Behavior of Coefficients ak
	Completion of Computations
	Summary of Results
	Application: Signs of 0=x"010Dn

