• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 27 (3) 2021, 99–107

Applying a Quantum Annealing Based Restricted Boltzmann Machine for MNIST Handwritten Digit Classification

Kurowski Krzysztof 1, Slysz Mateusz 1, Subocz Marek 1, Różycki Rafał 2

1 Poznan Supercomputing and Networking Center
ul. Jana Pawła II 10
61-139 Poznan, Poland
E-mail: krzysztof.kurowski@man.poznan.pl, mslysz@man.poznan.pl, marek.subocz@man.poznan.pl

2 Poznan University of Technology
Institute of Computing Science
ul. Piotrowo 2, 60-965 Poznan, Poland
E-mail: rafal.rozycki@cs.put.poznan.pl

This paper was guest edited by Dr. Cezary Mazurek

Received:

Received: 30 March 2021; revised: 14 June 2021; accepted: 28 June 2021; published online: 2 July 2021

DOI:   10.12921/cmst.2021.0000011

Abstract:

As indicated in various recent research, there may still be challenges in achieving acceptable performance using quantum computers for solving practical problems. Nevertheless, we demonstrate promising results by using the recent advent of the D-Wave Advantage quantum annealer to train and test a Restricted Boltzmann Machine for the well studied MNIST dataset. We compare our new model with some tests executed on the previous D-Wave 2000Q system and show an improved image classification process with a better overall quality. In this paper we discuss how to enhance often time-consuming RBM training processes based on the commonly used Gibbs sampling using an improved version of quantum sampling. In order to prevent overfitting we propose some solutions which help to acquire less probable samples from the distribution by adjusting D-wave control and embedding parameters. Finally, we present various limitations of the existing quantum computing hardware and expected changes on the quantum hardware and software sides which can be adopted for further improvements in the field of machine learning.

Key words:

D-Wave quantum computer, machine learning, MNIST dataset, quantum annealing, RBM training

References:

[1] K. Kurowski, J. Weglarz, M. Subocz, R. Rozycki, G. Waligóra, Hybrid Quantum Annealing Heuristic Method for Solving Job Shop Scheduling Problem, [In:] Computational Science – ICCS 2020. Lecture Notes in  Computer  Science 12142, Eds. V.V. Krzhizhanovskaya, G. Závodszky, M.H. Lees, J.J. Dongarra, P.M.A. Sloot, S. Brissos, J. Teixeira, Springer, Cham (2020).

[2]  J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning, Nature 549, 195–202 (2017).

[3]  S.H. Adachi, P. Maxwell, Henderson Application of quantum annealing to training of deep neural networks, arXiv: 1510.06356 (2015).

[4] S. Lloyd, M. Mohseni, P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning, arXiv: 1307.0411 (2013).

[5] N. Wiebe, A. Kapoor, K.M. Svore, Quantum Deep Learning, arXiv: 1412.3489 (2015).

[6] D. Crawford, A. Levit, N. Ghadermarzy, J.S. Oberoi, P. Ronagh, Reinforcement Learning Using Quantum Boltzmann Machines, arXiv: 1612.05695 (2016).

[7] P. Smolensky, Chapter 6: Information Processing in Dynamical Systems: Foundations of Harmony Theory, [In:] Parallel Distributed Processing: Explorations in the Microstructure  of  Cognition  1:  Foundations,  Eds.  D.E.  Rumelhart, J.L. McLelland, MIT Press, 194–281 (1986).

[8] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE 86(11), 2278–2324 (1998).

[9] M. Benedetti, J. Realpe-Gomez, A. Perdomo-Ortiz, Quantum-assisted helmholtz machines: a quantum-classical deep learning framework for industrial datasets in near-term devices, arXiv: 1708.09784 (2017).

[10] S. Ni, S. Nagayama, Performance comparison on cfrbm between gpu and quantum annealing, Technical report, Mercari (2018).

[11] Quantum annealing based RBM, https://github.com/marek subocz/QRBM.

[12] G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18(7), 1527–1554 (2006).

[13] T. Tieleman, Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient, Proceedings of the 25th international conference on Machine learning, 1064–1071 (2008).

[14]  J. Brugger, Ch. Seidel, M. Streif, F. Wudarski, Ch. Dittel, A. Buchleitner, Output statistics of quantum annealers with disorder, arXiv: 1808.06817 (2021).

[15] Scikit-learn documentation, https://scikit-learn.org/stable/modules/generated/sklearn.neuralnetwork.BernoulliRBM.html.

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST