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1 Poznan Supercomputing and Networking Center
ul. Jana Pawła II 10

61-139 Poznan, Poland
E-mail: krzysztof.kurowski@man.poznan.pl, mslysz@man.poznan.pl, marek.subocz@man.poznan.pl

2 Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 2, 60-965 Poznan, Poland
E-mail: rafal.rozycki@cs.put.poznan.pl

Received: 30 March 2021; revised: 14 June 2021; accepted: 28 June 2021; published online: 2 July 2021

This paper was guest edited by Dr. Cezary Mazurek

Abstract: As indicated in various recent research, there may still be challenges in achieving acceptable performance using
quantum computers for solving practical problems. Nevertheless, we demonstrate promising results by using the recent
advent of the D-Wave Advantage quantum annealer to train and test a Restricted Boltzmann Machine for the well studied
MNIST dataset. We compare our new model with some tests executed on the previous D-Wave 2000Q system and show
an improved image classification process with a better overall quality. In this paper we discuss how to enhance often time-
consuming RBM training processes based on the commonly used Gibbs sampling using an improved version of quantum
sampling. In order to prevent overfitting we propose some solutions which help to acquire less probable samples from the
distribution by adjusting D-wave control and embedding parameters. Finally, we present various limitations of the existing
quantum computing hardware and expected changes on the quantum hardware and software sides which can be adopted for
further improvements in the field of machine learning.
Key words: machine learning, RBM training, quantum annealing, D-Wave quantum computer, MNIST dataset

I. INTRODUCTION

Promising theoretical and experimental research indi-
cates using quantum annealing as an alternative approach
and a powerful technique for several combinatorial and dis-
crete optimization problems. Quantum annealers are using
different quantum phenomena, including tunneling and en-
tanglement. However, in contrast to circuit-based quantum
systems, quantum annealers have been successfully designed

and implemented to efficiently take advantage of the adi-
abatic theorem to find a physically realizable Hamiltonian
ground state. A few generations of quantum annealer devices
that exist today offer physical implementations of a non-
trivial size up to 5000 qubits provided by a D-Wave Advan-
tage device. In practice, adiabatic quantum optimization im-
plemented even in the older generation of quantum annealer
device, namely D-Wave 2000Q, may provide benefits in
solving classically-hard problems using appropriate embed-
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ding and heuristic techniques, e.g. for a job-shop schedul-
ing problem as we demonstrated recently in [1]. Also, many
machine learning algorithms are trained via solving optimi-
sation problems, in particular minimisation of a cost func-
tion. We have observed interesting studies in the area of ap-
plying quantum annealing for machine learning, discussed
for instance in [2–5]. In this context, a new approach using
simulated quantum annealing (SQA) to numerically simu-
late quantum sampling in a deep Boltzmann machine (DBM)
was presented in [6]. The authors proposed a framework
for training the network as a quantum Boltzmann machine
(QBM) in the presence of a significant transverse field for
reinforcement learning. However, they demonstrated that
the process of embedding Boltzmann machines in larger
quantum annealer architectures is problematic when huge
weights and biases are needed to emulate the Boltzmann
machine’s logical nodes using chains and clusters of phys-
ical qubits. On the other hand, quantum annealing has the
potential to speed up the sampling process exponentially.
Using a quantum annealer to draw representative samples
from a Boltzmann distribution could potentially provide an
alternative to classical machine learning techniques. Never-
theless, the remaining question is how far we still are from
practical use cases and applications as well as what are the
current constraints we should consider in particular.

The rest of this paper is organized as follows. Sec. 2 de-
scribes our primary motivations to design and implement
a new quantum-based sampling for Restricted Boltzmann
Machines. Sec. 3 presents the model characteristics and all
the parameters, whereas Sec. 4 discusses various extensions
and improvements thanks to the access to the latest quan-
tum D-Wave device. Sec. 5 shows a set of experiments and
achieved results, and our conclusions are presented in Sec. 6.

II. MOTIVATIONS

Motivated by the recent improvements in quantum an-
nealers offered by D-Wave, we wanted to test its effi-
ciency for a machine learning algorithm using a compre-
hensive image processing benchmark. Due to the limitation
of the existing quantum annealers and environmental effects
we focused on Restricted Boltzmann Machines (RBM) as
a particular class of unsupervised deep learning commonly
used for classification, regression or feature learning [7].
RBM is a well-known probabilistic unsupervised learning
model which is learned by an algorithm called Contrastive
Divergence. An important step of this algorithm is called
Gibbs sampling – a method that returns random samples
from a given probability distribution. We decided to con-
duct our experiments on the popular MNIST dataset consid-
ered a standard benchmark in many of the machine learning
and image recognition subfields [8]. The resolution of the
MNIST images is also perfect for the state-of-the art quan-
tum annealers, as the number of qubits is still limited. An in-

teresting approach was proposed for unsupervised learning
based on the implementation of a hybrid classical-quantum
architecture in [9]. The authors demonstrated how a D-Wave
2000Q device can be used for the generation of artificial im-
ages. For this task, they used a sub-sampled 16 × 16 pixels
version of the standard handwritten digit dataset MNIST.

Our first tests were based on a reference RBM implemen-
tation for D-Wave available at [10]. However, it turned out
that the original 28×28 resolution was too high for our initial
tests. The proposed method only allowed a small number of
input values, due to the fact that the whole problem was en-
coded on the quantum computer. Therefore, we could only
test this approach on a scaled-down version of the MNIST
data set with the 14 × 14 resolution which was hardly an
acceptable limitation for practical purposes. We redesigned
the proposed approach and implemented a new model from
scratch based on highly optimised QUBO formulation avail-
able at [11]. Consequently, the compression was no longer
needed and we achieve much better results as we demon-
strate in the next sections.

III. PROBLEM DESCRIPTION

Restricted Boltzmann Machine is a variant of a Boltzman
Machine – a stochastic, generative machine learning model
inspired by statistical physics. It can model the underlying
probability distribution of a training dataset. An RBM is a bi-
partite graph with two groups of nodes called visible and hid-
den. Learning an RBM corresponds to fitting its parameters
such that the distribution represented by the RBM models
the distribution underlying the training dataset.

There is a weighted connection between each pair of ver-
tices from different layers. A bias value is also associated
with each vertex from both layers, see a schematic RBM ar-
chitecture in Fig. 1.

Fig. 1. The schematic representation
of a Restircted Boltzman Machine

An RBM is an energy-based, probabilistic model, which
means that there is a scalar value assigned to each possi-
ble state. The probability of observing a given state depends
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on the energy function. The energy function for an RBM is
given by the following Eq. (1)

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

vihjwij . (1)

Probability value for a given state (v, h) is described as:

p(v, h) =
1

Z
e−E(v,h) , (2)

where Z is a partition function which serves as a normaliza-
tion factor and is generally difficult to compute

Z =
∑
v,h

e−E(v,h) . (3)

It is hard to compute every possible combination of v and
h, as it would require 2m+n operations, where n and m are
the lengths of v and h vectors, respectively. Classically, this
limitation has been evaded by assuming independence of
variables [12, 13]. Under this assumption, given the values
from the visible layer (e.g. the training data), much simpler
formulas for the conditional probabilities of the hidden layer
can be derived:

p(hj = 1|v) = σ(bj +
∑
i

wijvi) , (4)

where σ denotes the sigmoid function. Respectively, it can
be shown for the visible layer:

p(vi = 1|h) = σ(ai +
∑
j

wijhj) . (5)

The weights w as well as the biases a and b are parame-
ters subject to learning. The negative log likelihood function
seems to be the natural choice for the cost function, and the
goal of maximum likelihood is to find the parameter values
that give the distribution that maximise the probability of ob-
serving the data. Thus, in each iteration t we want to maxi-
mize the probability that each pixel in the generated vector
vt is equal to the training example x

L(x) =
1

T

T∑
t

− log p(vt = x) . (6)

If learning is using a gradient-based method such as
Stochastic Gradient Descent (SGD), it is necessary to cal-
culate the gradient of the loss function with respect to the
parameters. It can be shown that the gradient consists of two
terms called positive and negative phases of the gradient

∂(− log p(vt))

∂θ
= Eh

[
∂E(vt, h)

∂θ

∣∣∣∣vt]−Ev,h

[
∂E(v, h)

∂θ

]
.

(7)

The first part of the gradient can be derived as −h · vT .
However, the second part of the gradient is again difficult to
compute. To deal with this issue we use the Gibbs Sampling
method in order to estimate it. From input vt we can sample
values ht from the hidden layer as in Eq. (4). Then, given the
vector ht we can again sample a new vector v′t on the visi-
ble layer according to Eq. (5). After repeating this process
k times we get a random sample from the given distribution.
It can be shown that a good estimate of the negative part of
the gradient can be denoted as−h(k)t ·v

(k)T

t . In practice good
results can be achieved for just k = 1. Finally, the update
rule for the algorithm can be written as shown in Eq. (8):

wt+1 = wt + α
(
ht · vTt − h′t · v′Tt

)
, (8)

where α is the learning rate. Analogously the update rules
for biases can be derived as denoted in Eqs. (9) and (10)

at+1 = at + α
(
vTt − v′Tt

)
, (9)

bt+1 = bt + α
(
hTt − h′Tt

)
. (10)

This learning algorithm is called Contrastive Diver-
gence (CD) and is commonly used to train an RBM model.
The process is visualised in Fig. 2. It can be further enhanced
by adding solutions typical of some other popular learning
methods, such as learning rate decay or gradient momentum,
which might have a positive impact on the learning process.

IV. QUANTUM EXTENSIONS TO RBM

RBM is an energy based model with an energy function
described in Eq. (1). The D-wave’s Quantum Annealing al-
gorithm provides an efficient way to solve such a function.
In order to do that, a QUBO (Quadratic Unconstrained Bi-
nary Optimization) Eq. (11) needs to be constructed:

f(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj . (11)

In the next step, the QUBO representation is trans-
formed into a Binary Quadratic Model which can be used by
D-wave’s quantum sampler in order to obtain samples from
the model’s actual probability distribution.

With an energy-based sampler it is possible to obtain ac-
curate samples from the original distribution, which is com-
putationally expensive for a classical computer. However,
according to the latest experimental studies there are still
some technical challenges related to the constriction of the
D-Wave annealer which affects the quality of sampling from
a Boltzmann distribution as indicated in [14].

It is worth noting that it can be done without making
additional assumptions about the independence of variables,
which in general does not have to be true. Instead of classical
sampling as described in Eqs. (4) and (5), we get the sam-
ples as a result of a quantum annealing process. The only
input we need to encode for the quantum annealer are the
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Fig. 2. The schematic representation of the Contrastive Divergence algorithm

model parameters. They are given as a Hamiltonian equa-
tion for the problem. Sampling from the opposite layer re-
quires a specific definition of a Hamiltonian, corresponding
to the model parameters and input variables. For sampling
the hidden layer, given an input vector v consisting of binary
variables v1...n, we define the problem as follows. For each
vi = 1 a term is added to the equation as in Eq. (12), with
h1...m set as solvable parameters

H = −
m∑
j

((
n∑
i

(wi,j · vi) + bj

)
· hj

)
. (12)

Analogously, given a binary input vector h of length m, for
each hj = 1 we add a term to the Hamiltonian as in Eq. (13),
setting v1...n as solvable parameters

H = −
n∑
i

 m∑
j

(wi,j · hj) + ai

 · vi
 . (13)

V. EXPERIMENTS

V. 1. Basic Experiments
We created a new RBM model in Python and replaced

the classical sampling steps by the output of Dwave’s quan-
tum sampling function. We tested our model on the well-
known MNIST dataset [8]. MNIST is a dataset of handwrit-
ten digit images with 60 000 training samples and 10 000
testing samples. It is a popular machine learning benchmark
dataset which consists of images of size 28×28 pixels each.

Before feeding the data to the model, we had to per-
form some pre-processing steps due to the fact that an RBM
can only process binary data. We transformed the origi-
nal MNIST images to binary representation using a thresh-
old of 100 pixel brightness out of 0÷255 greyscale as
shown in Fig. 3. Next, we had to flatten the images so they
could fit onto the 1-dimensional RBM visible layer of length
28× 28 = 784.

Fig. 3. The example image of digit ‘0’ after the basic
pre-processing phase

To monitor the quality of training processes we used
a popular MSE (Mean Squared Error) measure between
the input image which activates the sampling process and the
generated image. The two images were compared pixel by
pixel and the MSE value was then normalized by dividing it
by the image size to fit between 0 and 1. For testing purposes
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Fig. 4. Normalised MSE values changing with an increasing number of epochs for a two digit problem

we compared the output image with an image of the digit
constructed by averaging over the whole dataset. As the mea-
sure does not exactly represent the quality of the output,
which may be subjective, it tends to go lower with a de-
creasing loss function during the learning process. An ex-
emplary plot of this value can be seen in Fig 4. The plot has
an L-shaped curve, typical for machine learning problems,
which drops rapidly at the beginning of the learning process
and then gradually decreases in the remaining epochs. How-
ever, there are some fluctuations because the MSE is not an
exact measure of the quality of the model.

We started to train our model starting from a single digit
case and processed only images of digit ‘0’. After training
the model for 500 epochs the model was able to generate
fairly accurate recreation of the digit. An exemplary result
can be seen in Fig. 5.

Then, we gradually added more digits to the training data
to make the problem harder for the model.

V. 2. Chain Strength
The chain strength is a crucial control parameter avail-

able in D-Wave architecture responsible for ensuring that re-
sults follow given restrictions. When a chain connects two
qubits, they are supposed to have the same binary value.
If the opposite is true, the chain is broken, which may lead
to suboptimal results. However, all QUBO weights are au-
toscaled to values between −1 and 1 together with the chain
strength value. As the chain strength gets larger, the QUBO
weights representing the original problem may shrink to
near-zero values, decreasing their importance. This means
that increasing the chain strength may result in a more dis-

tributed range of solutions, as original punishments become
less precise and more prone to thermal noise. Usually, this
effect would be undesirable, leading to a lower probability
of obtaining an optimal solution. However, the RBM uses
quantum annealer for sampling from a range of possible
solutions. When more generalization is needed (e.g. while
learning to produce images of more than one digit from the
same architecture), the broader distribution of solutions is
a positive phenomenon.

Fig. 5. The example image of digit ‘0’ generated by the model with
normalized MSE = 0.067

The phenomenon described in Sec. 5.2 is observable in
Fig. 6. When trained on a low number of digits, bqm yields
the best results with a low chain strength value. When the
number of digits goes up it turned out that the higher chain
strength value is much better.
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Fig. 6. The influence of chain strength and number of digits on the overall pictures quality generated by the RBM

We also wanted to discover the performance of the quan-
tum sampling process. We run the algorithm on both avail-
able quantum annealers (Advantage and 2000Q lower-noise)
and received similar execution times. QPU annealing on av-
erage takes 30 µs; sampling takes avg. 200 µs. The post-
processing takes avg. 350 µs, and readout operations take
avg. 150 µs. The overall connectivity cost to D-wave’s API
was also minimized in the code. Consequently, our imple-
mentation provides a significant speedup over a classical ap-
proach and can also be used as an alternative benchmark for
the RBM supported by quantum annealing devices. Never-
theless, in our opinion there are some additional improve-
ments possible but have not been investigated yet, in partic-
ular concerning coupling and biases scaling.

V. 3. Hidden Layer Size
Another model hyperparameter that we tested was the

size of the hidden layer. We tested how the generated images
change for hidden layer sizes from 10 to 100 units increas-
ing by 10 for a two digit problem (digits ‘0’ and ‘1’). A plot
consisting visualizations of generated images of the same
‘0’ digit from the test set with corresponding MSE score is
shown in Fig. 7.

For most of the experiments we set the hidden layer size
to 60 units, which was enough for the network to learn effi-
ciently and the training was still fast enough.

V. 4. Additional Extensions
In order to further enhance the model we implemented

some additional improvements to the learning algorithm.

Firstly we added learning rate decay, which is a mechanism
that decreases the learning rate α every couple of iterations.
It is used to further optimize the learning process after get-
ting stuck close to the optimum.

Then we added Momentum, which is a popular improve-
ment of gradient based algorithms, such as SGD or Adam.
The main idea behind the method is to calculate the gradi-
ent, not only based on the current data sample, but also the
previous gradient direction. The new parameter update rule
is denoted as follows:

wt+1 = wt + α · Vt , (14)

where Vt is the velocity calculated from the momentum al-
gorithm

Vt = γ · Vt−1 +
(
ht · vTt − h′t · v′Tt

)
. (15)

One can observe that for γ ∈ [0; 1] each gradient term
from previous iterations is added with a smaller weight.
A typical value for γ is usually around 0.9. This method
should help the learning algorithm to get out of saddle points
easily and prevent overfitting.

Another improvement that was added is a different vari-
ant of the learning algorithm called persistent CD. The main
difference is that in most iterations, instead of taking the in-
put data as vector v, we use the v′ vector from the previ-
ous iteration to calculate the negative phase of the gradient.
The reasoning behind this is that in a small number of it-
erations the model changes only slightly so we could effec-
tively reuse the previous samples to simulate executing more
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Fig. 7. The example dependence between the hidden layer size and the quality of the generated images (normalised MSE)

Gibbs sampling steps, as for k > 1. We had to use the v vec-
tor from the training every bs iterations to run the algorithm.
For classical case bs it is recommended to be the batch size;
however, in our implementation without the mini-batch ap-
proach it can be set to any value. The persistent CD is used
to be able to escape from local optima, as for k = 1 the sam-
pling result for the negative gradient phase is usually very
close to the original input data, henceforth prevent overfit-
ting.

Additionally, to compare our results with a classical ver-
sion of RBM we used the RBM algorithm implemented in
scikit-learn library [15] with the same training dataset and
hyperparameters, see the example digit generated in Fig. 8.

VI. CONCLUSIONS

We investigated and compared the approach for train-
ing the RBM that uses quantum sampling from two gen-
erations of D-Wave quantum annealers. We demonstrated
experimentally that the latest D-Wave Advantage QPU ar-
chitecture consisting of more than 5000 qubits and 35 000
couplers was good enough to compensate for limited qubit
connectivity and a noisy previous generation environment.
Our original contribution was to implement and run our ex-
periments to successfully train the RBM using a quantum
annealer in the D-Wave Advantage for the original MNIST
dataset with 28 × 28 pixels resolution. Moreover, we esti-
mated quantum sampling runtime to show the efficiency of
QPU versus classical systems.

We also tested many algorithm hyperparameters and in-
dicated that one of the most important aspects to consider is
the size of the RBM. The visible layer size was set to 784, as

Fig. 8. The example result of digit ‘0’ generated by a classical RBM
from sklearn library with normalised MSE = 0.039

it must be compatible with the output, but the hidden layer
size can be changed and, according to our experiments, may
impact the quality of the model. However, the time of learn-
ing the model grows significantly with the hidden layer’s
size because of the increasing number of variables in each
sampling step. Thus, we empirically set 50 as a reasonable
hidden layer size for the remaining experiments.

The model has also been tested on a different number of
digits in the training dataset. For a single digit it was easy
to efficiently train the model as it even tended to overfit.
This was more of a problem for a larger number of digits.
To prevent overfitting we proposed a number of solutions.
One of them was tuning the chain strength parameter, which
helped to acquire less probable samples from the distribu-
tion because the quantum annealer tended to find the global
optimum (e.g. the most probable sample) too often. We also
added some classical extensions to the learning algorithm
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such as learning rate decay, momentum and persistent CD
variant of the learning algorithm.
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