• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 14 (1) 2008, 47-54

Evidence in Favor of the Baez-Duarte Criterion for the Riemann Hypothesis

Wolf Marek

Institute of Theoretical Physics, University of Wroc aw
Pl. Maxa Borna 9, PL-50-204 Wroc aw, Poland
e-mail: mwolf@ift.uni.wroc.pl

Received:

Received; 22 October 2008; published online: 30 October 2008

DOI:   10.12921/cmst.2008.14.01.47-54

OAI:   oai:lib.psnc.pl:645

Abstract:

We present the results of the numerical experiments in favor of the Baez-Duarte criterion for the Riemann Hypothesis. We give formulae allowing calculation of numerical values of the numbers ck appearing in this criterion for arbitrary large k. We present plots of ck for k c (1,109).

Key words:

Baez-Duarte criterion for RH, Riemann Hypothesis

References:

[1] K. Maslanka, A hypergeometric-like Representation of Zeta-function of Riemann, Cracow Observatory preprint no. 1997/60, 1997; K. Maslanka, A hypergeometric-like Representation of Zeta-function of Riemann, posted at arXiv:math-ph/0105007 2001.
[2] L. Baez-Duarte, On Maslankas representation for the Riemann zeta function, 2003, math.NT/0307214.
[3 L. Baez-Duarte, A new necessary and su±cient condition for the Riemann Hypothesis, 2003, math.NT/0307215.
[4] L. Baez-Duarte, A sequential Riesz-like criterion for the Riemann Hypothesis, International Journal of Mathematics and Mathematical Sciences 3527-3537 (2005).
[5] K. Ma lanka, Liczba i kwant (in English: Number and quant), OBI 2004 Kraków.
[6] K. Ma lanka, Baez-Duartes Criterion for the Riemann Hypothesis and Rices Integrals, math.NT/0603713 v2 1 Apr 2006.
[7] R. L. Graham, D. E. Knuth and O. Patashnik, Binomial Coefficients. Ch. 5 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.
[8] E. C. Titchmarsh, The Theory of the Riemann Zeta Function, 2nd ed. New York: Clarendon Press, 1987.
[9] M. Riesz, Sur l’hypothe`se de Riemann, Acta Math. 40, 185-190 (1916).
[10] J. Cislo and M. Wolf, Criteria equivalent to the Riemann Hypothesis, arXiv:math.NT/0808.0640v2.
[11] L. Baez-Duarte, Möbius-Convolutions and the Riemann Hypothesis, arXiv:math.NT/0504402
[12] PARI/GP, version 2.2.11, Bordeaux, 2005, http://pari.math.u-bordeaux.fr/.
[13] S. Beltraminelli and D. Merlini, The criteria of Riesz, Hardy-Littlewood et al. for the Riemann Hypothesis revisited using similar functions, math.NT/0601138.
[14] P. Flajolet and R. Sedgewick, Theoretical Computer Science, 144 (1-2), 101-124 (1995).
[15] E. C. Titchmarsh, The Theory of Functions, 2nd ed. Oxford, England: Oxford University Press, 1960.
[16] S. Beltraminelli and D. Merlini, Riemann Hypothesis: The Riesz-Hardy-Littlewood wave in the long wavelength region, math.NT/0605565
[17] A. M. Odlyzko, An improved bound for the de Bruijn-Newman constant, Numerical Algorithms 25, 293-303 (2000).
[18] X.-J. Li, The Positivity of a Sequence of Numbers and the Riemann Hypothesis, J. Number Th. 65, 325-333 (1997).
[19] J. Oesterle unpublished, cited in P. Biane, J. Pitman and M. Yor, Probability Laws Related to the Jacobi Theta and Riemann Zeta Functions, and Brownian Excursions. Bull. Amer. Math. Soc. 38, 435-465 (2001).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_28_1_2022_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST