GET_pdf delibra

Volume 10 (2) 2004, 117-126

MOLECULAR MODELLING OF THE DEFORMATION MECHANISMS ACTING IN AUXETIC SILICA

Alderson Andrew 1, Alderson Kim L. 1*, Evans Kenneth E. 2, Grima Joseph N. 3, Williams Mark R. 1, Davies Philip J. 1

1 Centre for Materials Research and Innovation, Bolton Institute, Bolton BL3 SAB, UK
2Department of Engineering, University of Exeter, Exeter EX4 4QF, UK
3 Department of Chemistry, University of Malta, Msida MSD 06, Malta

Received:

Ree. 3 December 2004

DOI:   10.12921/cmst.2004.10.02.117-126

OAI:   oai:lib.psnc.pl:564

Abstract:

Molecular mechanics simulations have been performed to undertake a systematic investigation into the structure and mechanical properties of α-cristobalite undergoing uniaxial loading along each of the 3 mutually orthogonal principal directions and also hydrostatic pressure loading. Simulations were performed using both the BKS and Burchart force-fields. The simulations indicate that pressure loading and uniaxial loading along the x3 direction leads to uniform variation of the four independent Si-O-Si intertetrahedral angles, indicative of cooperative tetrahedral rotation about tetrahedral axes which transform the α-cristobalite structure into the ‘idealised’ β-cristobalite structure. Uniaxial loading along either of the transverse directions (x1 and x2) leads to a divergence of the intertetrahedral angles,
consistent with tetrahedral rotation about the tetrahedral axes which transform the idealised β-cristobalite structure into the ‘ordered’ β-cristobalite structure. The data also indicate that a phase transition to one of the proposed β phases may be induced by a negative hydrostatic pressure or tensile stress along x3. The phase transition is accompanied by a change in sign of some of the Poisson’s ratios (i.e. from positive to negative). A negative hydrostatic pressure is also predicted to lead to conversion of initially positive to negative Poisson’s ratio values (within the same phase).

References:

[1] A. E. H. Love, A Treatise on the Mathematical Theorv of Elasticity, 4th ed.; Dover: New York
(1944).
[2] K. E. Evans, M. M. Nkansah, I. J. Hutchinson, and S. C. Rogers, Nature 353, 124 (1991).
[3] R. S. Lakes, Science 235, 1038 (1987).
[4] K. L. Alderson, A. P. Pickles, P. J. Neale, and K. E. Evans, Acta Metall. Mater. 42, 2261 (1994).
[5] A. W. Lipsett and A. I. Beltzer, J. Acoust. Soc. Am. 84, 2179 (1988).
[6] K. E. Evans, Tailoring the Negative Poisson’s Ratio. Chem. Ind. 20, 654 (1990).
[7] W. A. Smith, i n : ‘Proceedings of IEEE ultrasonics symposium IEEE, 661 (1991).
[8] L. J. Gibson, and M. F. Ashbv, in: Cellular Solids: Structure and Properties (Pergamon Press,
Oxford, 1988).
[9] B. D. Caddock and K. E. Evans, J. Phvs. D: Appl. Phvs. 22, 1877 (1989).
[10] K. L. Alderson, and K. E. Evans, Polymer 33, 4435 (1992).
[11] J. P. Donoghue and K. E. Evans, in: Proc. ICCM 8 (Eds. S. W. Tsai, G. S. Springer), S WIPE.
Covina, CA, (1991), 2-K-l.
[12] J. F. Clarke, R. A. Duckett, P. J. Hine, I. J. Hutchinson, and I. M. Ward, Composites 25, 863
(1994).
[13] Y. Yeganeh-Haeri, D. J. Weidner, and J. B. Parise, Science 257, 650 (1992).
[14] R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, and S. Stafstrom, Nature 392, 362 (1998).
[15] K. W. Wojciechowski, Molecular Physics 61, 1247 (1987).
[16] J. N. Grima, R. Jackson, A. Alderson, and K. E. Evans: Adv. Mater. 12 (24), 1912 (2000).
[17] B. W. H. Van Beest, G. J. Kramer, and R. A. Van Santen: Phys. Rev. Lett. 64, 1955 (1990).
[18] E. Vos Burchart, in: Studies on Zeolites: Molecular Mechanics, Framework Stability and Crystal Growth, Ph.D. Thesis, Delft University of Technology, The Netherlands 1992, Table I, Chapter XII.
[19] N. R. Keskar and J. R. Chelikowsky, Phys. Rev. B, 46, 1-13 (1992).
[20] W. A. Dollase, Z. Kristallogr. 121, 369 (1965).
[21] R. W. G. Wyckoff, Amer. J. Sci. 9, 448-459 (1925).
[22] A. F. Wright and A. J. Leadbetter, Phil. Mag. 31, 1391-1401 (1975).
[23] M. O’Keeffe and B. G. Hvde: Acta Crvst. B 32, 2923 (1976).