• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 11 (1) 2005, 5-9

Variational calculations on 2+ H2+4 using exponentially correlated Gaussian wave functions

Bachorz Rafał, Komasa Jacek

Quantum Chemistry Group, Department of Chemistry, Adam Mickiewicz University
Grunwaldzka 6, 60-780 Poznań, Poland

Received:

Rec. 23 March 2005

DOI:   10.12921/cmst.2005.11.01.05-09

OAI:   oai:lib.psnc.pl:576

Abstract:

The method of exponentially correlated Gaussian (ECG) wave functions is extended to the case of multicenter molecular systems with nuclei arranged in a 3-dimensional space. A particular case of a four-center two-electron system, 24 H 2+  4, is studied by means of the variational approach. The energies reported in this work are the most accurate available to date.

Key words:

24 H 2+ 4 ion, exponentially correlated Gaussians (ECG), Gaussian geminals, variational optimization

References:

[1] S. Wright and G. A. DiLabio, J. Phys. Chem. 96, 10793 (1992).
[2] M. N. Glukhovtsev, P. von R. Schleyer and A. Stein, J. Phys. Chem. 97, 5541 (1993).
[3] M. N. Glukhovtsev, P. von R. Schleyer, N. J. R. van E. Hommes and J. W. de M. Carneiro, J. Comp. Chem. 14, 285 (1993).
[4] M. N. Glukhovtsev, P. von R. Schleyer and K. Lammertsma, Chem. Phys. Lett. 209, 207 (1993).
[5] W. Kołos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).
[6] J. Rychlewski and J. Komasa, Explicitly correlated functions in variational calculations. In: J. Rychlewski (Ed.) Explicitly Correlated Wave Functions in Chemistry and Physics. (Kluwer Academic Publishers, Dordrecht, 2003), p. 91.
[7] H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).
[8] J. Rychlewski, W. Cencek and J. Komasa, Chem. Phys. Lett. 229, 657 (1994).
[9] W. Cencek, J. Rychlewski, R. Jaquet and W. Kutzelnigg, J. Chem. Phys. 108, 2833 (1998).
[10] J. Komasa, W. Cencek and J. Rychlewski, Application of explicitly correlated Gaussian functions to large scale calculations on small atoms and molecules. Computational Methods in Science and Technology 2, 87 (1996).
[11] H. Müller and W. Kutzelnigg, Phys. Chem. Chem. Phys. 2, 2061 (2000).
[12] M. J. D. Powell, Comput. J. 7, 155 (1964).
[13] W. Cencek, J. Komasa, and J. Rychlewski, Chem. Phys. Lett. 246, 417 (1995).
[14] W. Cencek and W. Kutzelnigg, J. Chem. Phys. 105, 5878 (1996).
[15] W. Cencek, The role of efficient programming in theoretical chemistry and physics problems. Computational Methods in Science and Technology 1, 7 (1996).
[16] W. Cencek, J. Komasa, and J. Rychlewski, High-performance
Computing in Molecular Sciences. In: Handbook on Parallel and Distributed Processing, eds. J. Błażewicz, K. Ecker, B. Plateau, D. Trystram (Springer, Berlin, 2000), p. 505.
[17] R. A. Bachorz, MSc Thesis, A. Mickiewicz University, Poznań 2004.
[18] M. Torchała and J. Komasa, Efficiency of matrix elements computations on parallel systems. Computational Methods in Science and Technology 9, 137 (2003).
[19] J. Komasa, J. Rychlewski, Parallel Computing 26, 999 (2000).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST