• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 15 (2) 2009, 203-211

Two-by-Two Contingency Table as a Goodness-of-Fit Test

Sulewski Piotr

The Pomeranian Academy,
ul. Arciszewskiego 22, 76-200 Słupsk, Poland
e-mail: informpiotr@interia.eu

Received:

Received: 15 December 2008; revised: 25 September 2009; accepted: 16 October 2009; published online: 26 November 2009

DOI:   10.12921/cmst.2009.15.02.203-211

OAI:   oai:lib.psnc.pl:676

Abstract:

This publication presents a two-by-two contingency table as a goodness-of-fit test. The test is devoted to the exponential distribution. However, samples subjected to the test come from the Generalized Gamma Distribution. The aim is to determine the power of the test and to compare the obtained results to the Kolmogorov-Smirnov goodness-of-fit test.

Key words:

generalized gamma random value, goodness-of-fit test, power of test, two-by-two table

References:

[1] S. Ascher, A survey of tests for exponentilaity. Commun. Statist. – Theory Meth. 19, 1811-1825 (1990).
[2] S. Brandt, Data analysis. Warsaw 1998 (in Polish).
[3] A. Canaba and E. Cabana, Goodness of fit to the exponential distribution, focused on Weibull alternatives. Communication in Statistics – Simulation and Computation 34, 711-723 (2005).
[4] K. Ciechanowicz, Generalized gamma distribution and power distribution as a distribution of a robustness of elements. PAN, Warsaw 1969 (in Polish).
[5] H.A. David, Order statistics. Wiley, New York, 1970.
[6] R. Deutsch, Estimation theory. PWN, Warsaw 1969 (in Polish).
[7] D.V. Gokhale and S. Kullback, The information in contingency tables. Marcel Dekker, New York 1978.
[8] N. Henze and S.G. Meintanis, Recent and classical tests for exponentiality: a partial review with comparisons. Metrika 61, 29-45 (2005).
[9] H. Lilliefors, On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J. Amer. Statist. Assoc. 64, 387-389 (1969).
[10] E.W. Stacy, A generalization of the gamma distribution. Ann. Math. Statist. 33, 1187-92 (1962).
[11] P. Sulewski, Independence test of two characteristics realized by means of the two-way table. Słupskie Prace Matematyczno-Fizyczne 4, 83-97 (2006) (in Polish).
[12] P. Sulewski, Power of the two-way tables as a independence test. Wiadomości Statystyczne 14-23 (2007) (in Polish).
[13] R. Wieczorkowski and R. Zieliński, Computer generators of random numbers. WN-T, Warsaw 1997 (in Polish).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_25_3_2019_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST