• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 19 (2) 2013, 69-75

Time’s Arrow for Shockwaves ; Bit-Reversible Lyapunov and “Covariant” Vectors ; Symmetry Breaking

Hoover Wm.G. , Hoover C.G.

Ruby Valley Research Institute, Highway Contract 60, Box 601
Ruby Valley, Nevada 89833
E-mail: hooverwilliam@yahoo.com

Received:

(Received: 29 January 2013; accepted: 12 February 2013; published online: 8 March 2013)

DOI:   10.12921/cmst.2013.19.02.69-75

OAI:   oai:lib.psnc.pl:429

Abstract:

Strong shockwaves generate entropy quickly and locally. The Newton-Hamilton equations of motion, which underly the dynamics, are perfectly time-reversible. How do they generate the irreversible shock entropy? What are the symptoms of this irreversibility? We investigate these questions using Levesque and Verlet’s bit-reversible algorithm. In this way we can generate an entirely imaginary past consistent with the irreversibility observed in the present. We use Runge-Kutta integration to analyze the local Lyapunov instability of nearby “satellite” trajectories. From the forward and backward processes we identify those particles most intimately connected with the irreversibility described by the Second Law of Thermodynamics. Despite the perfect time symmetry of the particle trajectories, the fully-converged vectors associated with the largest Lyapunov exponents, forward and backward in time, are qualitatively different. The vectors display a time-symmetry breaking equivalent to Time’s Arrow. That is, in autonomous Hamiltonian shockwaves the largest local Lyapunov exponents, forward and backward in time, are quite different.

Key words:

bit reversibility, Lyapunov instability, shockwaves, time reversibility

References:

[1] B. L. Holian, Wm. G. Hoover, and H. A. Posch, “Resolution of Loschmidt’s Paradox: the Origin of Irreversible Behavior in Reversible Atomistic Dynamics”, Physical Review Letters 59, 10-13 (1987).
[2] Wm. G. Hoover and Carol G. Hoover, Time Reversibility, Computer Simulation, Algorithms, and Chaos (World Scientific, Singapore, 2012).
[3] Wm. G. Hoover, “Liouville’s Theorems, Gibbs’ Entropy, and Multifractal Distributions for Nonequilibrium Steady States”, Journal of Chemical Physics 109, 4164-4170 (1998).
[4] D. Levesque and L. Verlet, “Molecular Dynamics and Time Reversibility”, Journal of Statistical Physics 72, 519-537 (1993).
[5] M. Romero-Bastida, D. Pazó, J M. López, and M. A. Rodríguez, “Structure of Characteristic Lyapunov Vectors in Anharmonic Hamiltonian Lattices”, Physical Review E 82, 036205 (2010).
[6] Wm. G. Hoover and Carol G. Hoover, “Three Lectures; NEMD, SPAM, and Shockwaves”, pages 23-55 in Nonequilibrium Statistical Physics Today (Proceedings of the 11th Granada Seminar on Computational and Statistical Physics, 13-17 September 2010), P. L. Garrido, J. Marro, and F. de los Santos, Editors (AIP Conference Proceedings #1332, Melville, New York, 2011).
[7] Wm. G. Hoover and H. A. Posch, “Direct Measurement of Equilibrium and Nonequilibrium Lyapunov Spectra”, Physics Letters A 123, 227-230 (1987).
[8] Wm. G. Hoover, C. G. Hoover, and H. A. Posch, “Dynamical Instabilities, Manifolds, and Local Lyapunov Spectra Far From Equilibrium”, Computational Methods in Science and Technology (Poznan, Poland) 7, 55-65 (2001).
[9] P. V. Kuptsov and U. Parlitz, “Theory and Computation of Covariant Lyapunov Vectors”, Journal of Nonlinear Science 22, 727-762 (2012); ariv 1105.5228v3.
[10] C. Dellago and Wm. G. Hoover, “Are Local Lyapunov Exponents Continuous in Phase Space?”, Physics Letters A 268, 330-334 (2000).
[11] Wm. G. Hoover, C. G. Hoover, and D. J. Isbister, “Chaos, Ergodic Convergence, and Fractal Instability for a Thermostated Canonical Harmonic Oscillator, Physical Review E 63, 026209 (2001).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    2016-COVER_22_2
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST