• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf

Volume 24 (4) 2018, 221–225

The New Extended KdV Equation for the Case of an Uneven Bottom

Karczewska Anna 1, Rozmej Piotr 2

1 Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra, Poland
E-mail: A.Karczewska@wmie.uz.zgora.pl

2 Faculty of Physics and Astronomy
University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra, Poland
E-mail: P.Rozmej@if.uz.zgora.pl

Received:

Received: 20 November 2018; revised: 03 December 2018; accepted: 04 December 2018; published online: 20 December 2018

DOI:   10.12921/cmst.2018.0000057

Abstract:

The consistent derivation of the extended KdV equation for an uneven bottom for the case of α = O(β) andδ = O(β2) is presented. This is the only one case when second order KdV type nonlinear wave equation can be derived for arbitrary bounded bottom function.

Key words:

nonlinear equations, second order perturbation approach, surface gravity waves, uneven bottom

References:

[1] A. Karczewska, P. Rozmej, Ł. Rutkowski, A new nonlinear equation in the shallow water wave problem, Physica Scripta,89, 054026, (2014).

[2] A. Karczewska, P. Rozmej, E. Infeld Shallow water soli- ton dynamics beyond KdV, Physical Review E, 90, 012907, (2014).

[3] D.J.Korteweg,G.deVries,Onthechangeofformofthelong waves advancing in a rectangular canal, and on a new type of stationary waves, Phil. Mag. (5), 39, 422 (1895).

[4] T.R.Marchant,N.F.Smyth,TheextendedKorteweg-deVries equation and the resonant flow of a fluid over topography, Journal of Fluid Mechanics, 221, 263-288, (1990).

[5] The review by the anonymous referee of the paper: P. Rozmej, A. Karczewska, Comment on the paper “The third-order perturbed Korteweg-de Vries equation for shal- low water waves with a non-flat bottom” by M. T.C. Fokou Kofané, A. Mohamadou and E. Yomba, Eur. Phys. J. Plus, 132, 410 (2017), arXiv:1804.01940.

[6] P. Rozmej, A. Karczewska, Extended KdV equation for the case of uneven bottom, arXiv:1810.07183. Submitted to Phys. Rev. E.

[7] E. Infeld, A. Karczewska, G. Rowlands, P. Rozmej, Exact cnoidal solutions of the extended KdV equation, Acta Phys. Pol. A, 133, 1191-1199, (2018).

[8] P. Rozmej, A. Karczewska, E. Infeld: Superposition solutions to the extended KdV equation for water surface waves, Non- linear Dynamics 91, 1085-1093, (2018).

[9] P. Rozmej, A. Karczewska, New Exact Superposition Solu- tions to KdV2 Equation, Advances in Mathematical Physics.2018, Article ID 5095482, 1-9, (2018).

[10] G. Rowlands, P. Rozmej, E. Infeld, A. Karczewska, Single soliton solution to the extended KdV equation over uneven depth, Eur. Phys. J. E, 40, 100, (2017).

[11] A. Karczewska, P. Rozmej, Shallow water waves – extended Kortewed-de Vries equations, University of Zielona Góra, 2018.

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST