Structure of Small Platinum Clusters Revised
Winczewski Szymon 1, Rybicki Jarosław 1,2,3
1Faculty of Technical Physics and Applied Mathematics
Gdansk University of Technology
Narutowicza 11/12, 80-952 Gdańsk, Poland
e-mail: swinczew@mif.pg.gda.pl; ryba@pg.gda.pl
2TASK Computer Centre, Gdansk University of Technology
Narutowicza 11/12, 80-952 Gdańsk, Poland
3Insitute of Mechatronics, Nanotechnology and Vacuum Techniques
Koszalin University of Technology,
Racławicka 5-17, 75-620 Koszalin, Poland
Received:
Received: 30 March 2011 revised: 24 November 2011 accepted: 25 November 2011; published online: 15 December 2011
DOI: 10.12921/cmst.2011.17.01.75-85
OAI: oai:lib.psnc.pl:741
Abstract:
Systematic studies on the structure of platinum clusters consisting of N = 2-15 atoms were performed using density functional theory. The results show that up to N = 9 atoms planar structures are as stable as three- dimensional ones. For larger clusters, both distorted and disordered spatial structures are preferred. The global minima of N = 10- and 14-atom clusters were found to possess fcc-like structures with significantly higher stability.
Key words:
catalysis, density functional theory, genetic algorithms, nanoparticles, Pt clusters
References:
[1] A. Capon, R. Parsons, J. Electroanal. Chem. 45, 205 (1973).
[2] J. Clavilier, R. Parsons, R. Durand, C. Lamy, J.M. Leger, J. Electroanal. Chem. 124, 321 (1981).
[3] H. Dahms, J.O.M. Bockris, J. Electrochem. Soc. 111, 728 (1964).
[4] S. Mukerjee, S. Srinivasan, J. Electroanal. Chem. 357, 201 (1993)
[5] K. Masaaki, I. Hirokazu, T. Masato, A. Masakazu, M.S-C, M. Hiroaki, S. Eiji, Y. Yuko, E. Takashi, Nippon Kagakkai Koen Yokoshu 81, 118 (2002).
[6] M. Takeuchi, S. Sakai, A. Ebrahimi, M. Matsuoka, M. Anpo, Topics in Catalysis 52, 1651 (2009).
[7] A. Sachdev, R.I. Masel, J. B. Adams, J. Catal. 136, 320 (1992).
[8] J.P.K. Doye, D.J. Wales, New J. Chem 733 (1998).
[9] S.H. Yang, D.A. Drabold, J.B. Adams, P. Ordejon, K. Glassford, J. Phys.: Condens. Matter 9, L39 (1997).
[10] N. Watari, S. Ohnishi, Phys. Rev. B 58, 1665 (1998).
[11] L. Xiao L. Wang, J. Phys. Chem. A 108, 8605 (2004).
[12] E. Apra, A. Fortunelli, J. Molecular Structure (Theochem) 501, 251 (2000).
[13] E. Apra, A. Fortunelli, J. Phys. Chem. A 107, 2934 (2003).
[14] A. Nie, J. Wu, C. Zhou, S. Yao, C. Luo, R.C. Forrey, H. Cheng, International Journal of Quantum Chemistry 107, 219 (2007).
[15] K. Bhattacharyya, C. Majumder, Chem. Phys. Lett. 446, 374 (2007).
[16] A. Sebetci, Phys. Chem. Chem. Phys. 11, 921 (2009).
[17] L.O. Paz-Borbon, Roy L. Johnston, A. Fortunelli, J. Phys. Chem. C 111, 2936 (2007).
[18] L.O. Paz-Borbon, A. Gupta, Roy L. Johnston, J. Mater. Chem. 18, 4154 (2008).
[19] L.O. Paz-Borbon, Roy L. Johnston, G. Barcaro, A. Fortunelli, J. Chem. Phys. 128, 134517 (2008).
[20] A. Longsdail, L.O. Paz-Borbon, Roy L. Johnston, Journal of Computational and Theoretical Nanoscience 6, 1 (2009).
[21] Roy L. Johnston, J. Chem. Soc. Dalton Trans. 4193 (2003).
[22] A.F. Voter, Los Alamos Unclassified Report LA-UR 93-3901 (1993).
[23] B. Hartke, J. Phys. Chem. 97, 9973 (1993).
[24] Y. Zeiri, Phy. Rev. E 51, R2769 (1995).
[25] D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995).
[26] M.J. Frisch et al., GAUSSIAN 03, Revision E.01, Gaussian Inc., Wallingford, 2004.
[27] J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992).
[28] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.P. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
[29] K.V. Tretiakov, K.W. Wojciechowski, Phys. Rev. E 60, 7626 (1999).
[30] A. Schafer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).
[31] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990).
[32] B.M. Bode, M.S. Gordon, J. Mol. Graphics and Modeling 16, 133 (1998).
[33] A. Marijnissen, T.T. ter Meulen, P.A. Hackett, B. Simard, Phys. Rev. A 52, 2606 (1995).
[34] N.D. Gibson, B.J. Davies, D.J. Larson, J. Chem. Phys. 98, 5104 (1993).
[35] M.M. Airola, M.D. Morse, J. Chem. Phys. 116, 1313 (2002).
[36] A. Grushow, K.M. Ervin, J. Chem. Phys. 106, 9580 (1997).
Systematic studies on the structure of platinum clusters consisting of N = 2-15 atoms were performed using density functional theory. The results show that up to N = 9 atoms planar structures are as stable as three- dimensional ones. For larger clusters, both distorted and disordered spatial structures are preferred. The global minima of N = 10- and 14-atom clusters were found to possess fcc-like structures with significantly higher stability.
Key words:
catalysis, density functional theory, genetic algorithms, nanoparticles, Pt clusters
References:
[1] A. Capon, R. Parsons, J. Electroanal. Chem. 45, 205 (1973).
[2] J. Clavilier, R. Parsons, R. Durand, C. Lamy, J.M. Leger, J. Electroanal. Chem. 124, 321 (1981).
[3] H. Dahms, J.O.M. Bockris, J. Electrochem. Soc. 111, 728 (1964).
[4] S. Mukerjee, S. Srinivasan, J. Electroanal. Chem. 357, 201 (1993)
[5] K. Masaaki, I. Hirokazu, T. Masato, A. Masakazu, M.S-C, M. Hiroaki, S. Eiji, Y. Yuko, E. Takashi, Nippon Kagakkai Koen Yokoshu 81, 118 (2002).
[6] M. Takeuchi, S. Sakai, A. Ebrahimi, M. Matsuoka, M. Anpo, Topics in Catalysis 52, 1651 (2009).
[7] A. Sachdev, R.I. Masel, J. B. Adams, J. Catal. 136, 320 (1992).
[8] J.P.K. Doye, D.J. Wales, New J. Chem 733 (1998).
[9] S.H. Yang, D.A. Drabold, J.B. Adams, P. Ordejon, K. Glassford, J. Phys.: Condens. Matter 9, L39 (1997).
[10] N. Watari, S. Ohnishi, Phys. Rev. B 58, 1665 (1998).
[11] L. Xiao L. Wang, J. Phys. Chem. A 108, 8605 (2004).
[12] E. Apra, A. Fortunelli, J. Molecular Structure (Theochem) 501, 251 (2000).
[13] E. Apra, A. Fortunelli, J. Phys. Chem. A 107, 2934 (2003).
[14] A. Nie, J. Wu, C. Zhou, S. Yao, C. Luo, R.C. Forrey, H. Cheng, International Journal of Quantum Chemistry 107, 219 (2007).
[15] K. Bhattacharyya, C. Majumder, Chem. Phys. Lett. 446, 374 (2007).
[16] A. Sebetci, Phys. Chem. Chem. Phys. 11, 921 (2009).
[17] L.O. Paz-Borbon, Roy L. Johnston, A. Fortunelli, J. Phys. Chem. C 111, 2936 (2007).
[18] L.O. Paz-Borbon, A. Gupta, Roy L. Johnston, J. Mater. Chem. 18, 4154 (2008).
[19] L.O. Paz-Borbon, Roy L. Johnston, G. Barcaro, A. Fortunelli, J. Chem. Phys. 128, 134517 (2008).
[20] A. Longsdail, L.O. Paz-Borbon, Roy L. Johnston, Journal of Computational and Theoretical Nanoscience 6, 1 (2009).
[21] Roy L. Johnston, J. Chem. Soc. Dalton Trans. 4193 (2003).
[22] A.F. Voter, Los Alamos Unclassified Report LA-UR 93-3901 (1993).
[23] B. Hartke, J. Phys. Chem. 97, 9973 (1993).
[24] Y. Zeiri, Phy. Rev. E 51, R2769 (1995).
[25] D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995).
[26] M.J. Frisch et al., GAUSSIAN 03, Revision E.01, Gaussian Inc., Wallingford, 2004.
[27] J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992).
[28] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.P. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
[29] K.V. Tretiakov, K.W. Wojciechowski, Phys. Rev. E 60, 7626 (1999).
[30] A. Schafer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994).
[31] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990).
[32] B.M. Bode, M.S. Gordon, J. Mol. Graphics and Modeling 16, 133 (1998).
[33] A. Marijnissen, T.T. ter Meulen, P.A. Hackett, B. Simard, Phys. Rev. A 52, 2606 (1995).
[34] N.D. Gibson, B.J. Davies, D.J. Larson, J. Chem. Phys. 98, 5104 (1993).
[35] M.M. Airola, M.D. Morse, J. Chem. Phys. 116, 1313 (2002).
[36] A. Grushow, K.M. Ervin, J. Chem. Phys. 106, 9580 (1997).