Quantum-chemical Calculations of the Antioxidant Properties of trans-p-coumaric Acid and trans-sinapinic Acid
Urbaniak Alicja 1*, Molski Marcin 1, Szeląg Małgorzata 2
1Department of Theoretical Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
2Department of Human Molecular Genetics, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
* e-mail: au50380@st.amu.edu.pl
Received:
(Received: 11 February 2012; accepted: 6 June 2012; published online: 27 August 2012)
DOI: 10.12921/cmst.2012.18.02.117-128
OAI: oai:lib.psnc.pl:418
Abstract:
Trans-p-coumaric and trans-sinapinic acids are cinnamic acid`s derivatives which show strong antioxidant properties. In this work full optimization of both chemical structures and their radical, cation radical and anionic forms in vacuum and water medium has been performed, and antioxidant descriptors: Bond Dissociation Enthalpy, Adiabatic Ionization Potential, Proton Dissociation Enthalpy, Proton Affinity, Electron Transfer Enthalpy, Gas Phase Acidity, Free Gibbs Energy have been calculated. The Highest Occupied and Lowest Unoccupied Molecular Orbital energies have been employed to determine groups in compounds studied with the highest electron density. All calculations were performed using Gaussian 03W software package at the DFT level of theory (B3LYP hybrid functional) together with 6-311+G(2d,2p) basis set. Strong antioxidant properties of both investigated compounds were determined in this study. Based on the results it may be suggested that trans-p-coumaric and transsinapinic acids react according to the Hydrogen Atom Transfer mechanism in vacuum and according to Single- Electron Transfer followed by the Proton Transfer mechanism
Key words:
AIP, antioxidant properties, BDE, C-PCM model, DFT, ETE, HOMO and LUMO energy, PA, PDE, trans-p-coumaric acid, trans-sinapinic acid
References:
[1] N.F. Boyd, V. McGuire, The possible role of lipid peroxidation in breast cancer risk. Free Radical Biol. Med. 10, 185-190 (1991).
[2] R.L. Nelson, Dietary iron and colorectal cancer risk. Free Radical Biol. Med. 12, 161-168 (1992).
[3] P. Knekt, A. Reunanen, H. Takkunen, A. Aromaa, M. Heliovaara, T. Hakuunen, Body iron stores and risk of cancer. Int. J. Cancer 56, 379-382 (1994).
[4] G.S. Omenn, G.E. Goodman, M.D. Thornquist, J. Balmes, M.R. Cullen, A. Glass, J.P. Keogh, F.L. Meyskens, B. Valanis, J.H. Williams, S. Barnhart, S. Hammar, Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150-1155 (1996).
[5] R.A. Riemmersma, D.A. Wood, C.C.A. Macityre, R.A. Elton, K.F. Gey, M.F. Oliver, Risk of angina pectoris and plasma concentrations of vitamins A, C and E and carotene. Lancet 337, 1-4 (1991).
[6] J.T. Salonen, K. Nyyssoner, H. Korpela, J. Tuomilehto, R. Seppanen, R. Salonen, High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86, 803-811 (1992).
[7] D.A. Street, G. Comstock, R. Salkeldy, M. Klag, Serum antioxidants and myocardial infarction. Are low levels of carotenoids and alpha-tocopherol risk factors for myocardial infarction? Circulation 90, 1154-1161 (1994).
[8] L.H. Kushi, A.R. Folsom, R.J. Prineas, P. J. Mink, Y. Wu, R. Bostick, Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N. Engl. J. Med. 334, 1156-1162 (1996).
[9] O.M. Panasenko, T.V. Nova, O.A. Azizova, Y.A. Vladimirov, Free radical modification of lipoproteins and cholesterol accumulation in cells upon atherosclerosis. Free Radical Biol. Med. 10, 137-148 (1991).
[10] D. Steinberg, Antioxidants and Atherosclerosis A Current Assessment. Circulation 84, 1420-1425 (1991).
[11] D.R. Janero, Therapeutic potential of vitamin E in pathogenesis of spontaneous atherosclerosis. Free Radical Biol. Med. 11, 129-144 (1991).
[12] H.N. Hodis, W.J. Mack, L. LaBree, L. Cashin-Hemphill, A. Sevanian, R. Johnson, S. Azen, Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary artery atherosclerosis. J. Am. Med. Assoc. 273, 1849-1854 (1995).
[13] D.A. Butterfield, K. Hensley, M. Harris, M. Mattson, J. Carney, A model for beta-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: implications of “molecular shrapnel” for Alzheimer` s disease. Proc. West Pharmacol Soc. 38, 113-120 (1995).
[14] K. Hensley, J.M. Carney, M.P. Mattson, M. Aksenova, M. Harris, J.F. Wu, R.A. Floyd, D.A. Butterfield, A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 91, 3270- 3274 (1994).
[15] D.A. Butterfield, L. Martin, J. M. Carney, K. Hensley, A beta (25-35) peptide displays H2O2-like reactivity towards aqueous Fe2+, nitroxide spin probes, and synaptosomal membrane proteins. Life Sci. 58, 217-228 (1995).
[16] D.A. Butterfield, beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer` s disease. Chem. Res. Toxicol. 10, 495-506 (1997).
[17] R. Sultana, D.A. Butterfield, Redox proteomics studies of in vivo amyloid beta-peptide animal models of Alzheimer`s disease: Insight into the role of oxidative stress. Proteom. Clinic. Appl. 2, 685-696 (2008).
[18] C. Rice-Evans, C. Rice- Evans, B. Halliwell, G.G. Lunt, Free Radicals and Oxidative Stress: Environment, Drugs and Food Additives. Portland Press, 103-116 (1995).
[19] Y. Zhang, X. Tie, B. Bao, X. Wu, Y. Zhang, Metabolism of flavone C-glucosides and p-coumaric acid from antioxidant of bamboo leaves (AOB) in rats. B. J. Nutr. 97, 484-494 (2007).
[20] F. Borges, F. Roleira, N. Milhazes, L. Santana, E. Uriarte, Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biologicalactivity, Curr. Med. Chem. 12, 887-916 (2005).
[21] L.Y. Zang, G. Cosma, H. Gardner, X. Shi, V. Castranova, V. Vallyathan, Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. A. J. Physiol.-Cell Physiol. 279, C954-C960 (2000).
[22] K.J. Dabrowski, F.W. Sosulski, Quantitation of Free and Hydrolyzable Phenolic Acids in Seeds by Capillary Gas- Liquid Chromatography. J. Agric. Food Chem. 32, 123– 127 (1984).
[23] F. Shahidi, M. Naczk, Phenolics in Food and Nutraceuticals. CRC Press, Boca Raton, FL (2003).
[24] U. Thiyam, H. Stöckmann, T.Z. Felde, K. Schwarz, Antioxidative effect of the main sinapic acid derivatives from rapeseed and mustard oil by-products. Eur. J. Lipid Sci. Technol. 108, 239-248 (2006).
[25] T. Stevanovic, P.N. Diouf, M.E. Garcia-Perez, Bioactive polyphenols from healthy diets and forest biomass. Curr. Nutr. Food Sci. 5, 264-295 (2009).
[26] V.D. Kancheva, L. Saso, P.V. Boranova, A. Khan, M.K. Saroj, M.K. Pandey, S. Malhotra, J.Z. Nechev, S.K. Sharma, A.K. Prasad, M.B. Georgieva, C. Joseph, A.L. DePass, R.C. Rastogi, V.S. Parmar, Structure-activity relationship of dihydroxy-4-methylcoumarins as powerful antioxidants: Correlation between experimental & theoretical data and synergistic effect. Biochem. 92, 1089-1100 (2010).
[27] Y.H. Yeh, Y.T. Lee, H.S. Hsieh, D.F. Hwang, Dietary Caffeic Acid, Ferulic Acid and Coumaric Acid Supplements on Cholesterol Metabolism and Antioxidant Activity in Rats. J. Food and Drug Anal. 17, 123-132 (2009).
[28] A. Galano, M. Francisco-Marquez, J. Raul Alvarez-Idaboy, Mechanism and kinetics studies on the antioxidant activity of sinapinic acid. Phys. Chem. Chem. Phys. 13, 11199– 11205 (2011).
[29] A. Gaspar, M. Martins, P. Silva, E. M. Garrido, J. Garrido, O. Firuzi, R. Miri, L. Saso, F. Borges, Dietary Phenolic Acids and Derivatives. Evaluation of the Antioxidant Activity of Sinapic Acid and Its Alkyl Esters. J. Agric. Food Chem. 58, 11273-11280 (2010).
[30] E.G. Bakalbassis, A. Chatzopoulou, V.S. Melissas, M. Tsimidou, M. Tsolaki, A. Vafiadis, Ab initio and density functional theory studies for the explanation of the antioxidant activity of certain phenolic acids. Lipids 36, 181-190 (2001).
[31] B.H. Yoon, J.W. Jung, J.-J. Lee, Y.-W. Cho, C.-G. Jang, C. Jin, T.H. Oh, J.H. Ryu, Anxiolytic-like effects of sinapic acid in mice. Life Sci. 81, 234–240 (2007).
[32] K.J. Yun, D.J. Koh, S.H. Kim, S.J. Park, J.H. Ryu, D.G. Kim, J.Y. Lee, K.T. Lee, Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation,. J. Agric. Food Chem. 56, 10265-10272 (2008).
[33] T. Niwa, U. Doi, Y. Kato, T. Osawa, Inhibitory mechanism of sinapinic acid against peroxynitrite-mediated tyrosine nitration of protein in vitro. FEBS Lett. 459, 43-46 (1999).
[34] Y. Zou, A.R. Kim, J.E. Kim, J.S. Choi, H.Y. Chung, Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy- 4-hydroxycinnamic acid) isolated from Brassica juncea, J. Agric. Food Chem. 50, 5884-5890 (2002).
[35] M.E. Cuvelier, H. Richard, C. Berset, Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci. Biotechnol. Biochem. 56, 324-325 (1992).
[36] O. Firuzi, L. Giansanti, R. Vento, C. Seibert, R. Petrucci, G. Marrosu, R. Agostino, L. Saso, Hypochlorite scavenging activity of hydroxycinnamic acids evaluated by a rapid microplate method based on the measurement of chloramines. J. Pharm. Pharmacol. 55, 1021-1027 (2003).
[37] N. Nenadis, O. Lazaridou, M.Z. Tsimidou, Use of reference compounds in antioxidant activity assessment. J. Agric. Food Chem. 55, 5452-5460 (2007).
[38] M. Szeląg, D. Mikulski, M. Molski, Quantum – chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites. J. Mol. Mod., DOI 10.1007/s00894-011-1306-y (2011).
[39] M. Leopoldini, N. Russo, M. Toscano, The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry 125, 288-306 (2011).
[40] M.C. Foti, C. Daquino, C. Geraci, Electron – transfer reaction of cinnamic acids and their methyl esters with the DPPH. radical in alcoholic solutions. J. Org. Chem. 69, 2309-2314 (2004).
[41] G. Litwinienko, K.U. Ingold, Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem. 69, 5888-5896 (2004).
[42] M. Musialik, G. Litwinienko, Scavenging of dpph. radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org. Lett. 7, 4951-4954 (2005).
[43] I. Nakanishi, T. Kawashima, K. Ohkubo, H. Kanazawa, K. Inami, M. Mochizuki, K. Fukuhara, H. Okuda, T. Ozawa, S. Itoh, S. Fukuzumi, N. Ikota, Electron – transfer mechanism in radical scavenging reactions by vitamin E model in a protic medium. Org. & Biomolecular Chem. 3, 626-629 (2005).
[44] G. Litwinienko, K.U. Ingold, Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc. Chem. Res. 40, 222-230 (2007).
[45] M. Leopoldini, N. Russo, M. Toscano, Gas and Liquid Phase Acidity of Natural Antioxidants. J. Agric. Food Chem. 54, 3078–3085 (2006).
[46] M. Leopoldini, N. Russo, M. Toscano, The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 125, 288–306 (2011).
[47] D. Mikulski, M. Szeląg, M. Molski, R. Górniak, Quantumchemical study on the antioxidation mechanisms of transresveratrol reactions with free radicals in the gas phase, water and ethanol environment. J. Mol. Structure 951, 37-48 (2010).
[48] Y.J. Shang, Y.P. Qian, X.D. Liu, F. Dai, X.L. Shang, W.Q. Jia, Q. Liu, J.G. Fang, B. Zhou, Radical – scavenging activity and mechanism of resveratrol – oriented analogues: influence of the solvent, radical, and substitution. J. Org. Chem. 74, 5025-5031 (2009).
[49] S. Sebastian, N. Sundaraganesan, S. Manoharan, Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 74, 312-323 (2009).
[50] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Roob, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Milliam, S.S. Iyengar, J. Tomasi, V. Barone, B. Menucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Ciosłowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision C02. Gaussian Inc., Wallingford, CT, 2003.
[51] K. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Review B 136, 864-871 (1964).
[52] W. Kohn, L.J. Sham, Self – consistent equations including exchange and correlation effects. Phys. Review A 140, 1133-1138 (1965).
[53] C. Lee, W. Yang, R.G. Parr, Development of the Cole – Salvetti correlation energy formula into a functional of the electron density. Physical Review B 37, 785-789 (1988).
[54] M. Cossi, N. Rega, G. Scalmani, V. Barone, Energies, structures, and electronic properties of molecules in solutions with the C-PCM solvation model. J. Comp. Chem. 24, 669-681 (2003).
[55] J.S. Wright, E.R. Johnson, G.A. DiLabio, Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 123, 1173-1183 (2001).
[56] V.D Parker, Homolytic bond (H-A) dissociation free energies in solution-applications of the standard potential of the (H+/H) couple. J. Am. Chem. Soc. 114, 7458-7462 (1992).
[57] M.M. Bizarro, B.J.C. Cabral, R.M.B. dos Santos, J.A.M. Simoes, Substituent effects on the O-H bond dissociation enthalpies in phenolic compounds: agreements and controversies. Pure Appl. Chem. 71, 1249-1256 (1999).
[58] E. Klein, J. Rimarcik, V. Lukes, DFT/B3LYP study of the O-H bond dissociation enthalpies and proton affinities of para- and meta-substituted phenols in water and benzene. Acta Chim. Slovaca 2, 37-51 (2009).
[59] P.W. Atkins, Physical chemistry.6th edn. Oxford University Press, Oxford (1998).
Trans-p-coumaric and trans-sinapinic acids are cinnamic acid`s derivatives which show strong antioxidant properties. In this work full optimization of both chemical structures and their radical, cation radical and anionic forms in vacuum and water medium has been performed, and antioxidant descriptors: Bond Dissociation Enthalpy, Adiabatic Ionization Potential, Proton Dissociation Enthalpy, Proton Affinity, Electron Transfer Enthalpy, Gas Phase Acidity, Free Gibbs Energy have been calculated. The Highest Occupied and Lowest Unoccupied Molecular Orbital energies have been employed to determine groups in compounds studied with the highest electron density. All calculations were performed using Gaussian 03W software package at the DFT level of theory (B3LYP hybrid functional) together with 6-311+G(2d,2p) basis set. Strong antioxidant properties of both investigated compounds were determined in this study. Based on the results it may be suggested that trans-p-coumaric and transsinapinic acids react according to the Hydrogen Atom Transfer mechanism in vacuum and according to Single- Electron Transfer followed by the Proton Transfer mechanism
Key words:
AIP, antioxidant properties, BDE, C-PCM model, DFT, ETE, HOMO and LUMO energy, PA, PDE, trans-p-coumaric acid, trans-sinapinic acid
References:
[1] N.F. Boyd, V. McGuire, The possible role of lipid peroxidation in breast cancer risk. Free Radical Biol. Med. 10, 185-190 (1991).
[2] R.L. Nelson, Dietary iron and colorectal cancer risk. Free Radical Biol. Med. 12, 161-168 (1992).
[3] P. Knekt, A. Reunanen, H. Takkunen, A. Aromaa, M. Heliovaara, T. Hakuunen, Body iron stores and risk of cancer. Int. J. Cancer 56, 379-382 (1994).
[4] G.S. Omenn, G.E. Goodman, M.D. Thornquist, J. Balmes, M.R. Cullen, A. Glass, J.P. Keogh, F.L. Meyskens, B. Valanis, J.H. Williams, S. Barnhart, S. Hammar, Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150-1155 (1996).
[5] R.A. Riemmersma, D.A. Wood, C.C.A. Macityre, R.A. Elton, K.F. Gey, M.F. Oliver, Risk of angina pectoris and plasma concentrations of vitamins A, C and E and carotene. Lancet 337, 1-4 (1991).
[6] J.T. Salonen, K. Nyyssoner, H. Korpela, J. Tuomilehto, R. Seppanen, R. Salonen, High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86, 803-811 (1992).
[7] D.A. Street, G. Comstock, R. Salkeldy, M. Klag, Serum antioxidants and myocardial infarction. Are low levels of carotenoids and alpha-tocopherol risk factors for myocardial infarction? Circulation 90, 1154-1161 (1994).
[8] L.H. Kushi, A.R. Folsom, R.J. Prineas, P. J. Mink, Y. Wu, R. Bostick, Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N. Engl. J. Med. 334, 1156-1162 (1996).
[9] O.M. Panasenko, T.V. Nova, O.A. Azizova, Y.A. Vladimirov, Free radical modification of lipoproteins and cholesterol accumulation in cells upon atherosclerosis. Free Radical Biol. Med. 10, 137-148 (1991).
[10] D. Steinberg, Antioxidants and Atherosclerosis A Current Assessment. Circulation 84, 1420-1425 (1991).
[11] D.R. Janero, Therapeutic potential of vitamin E in pathogenesis of spontaneous atherosclerosis. Free Radical Biol. Med. 11, 129-144 (1991).
[12] H.N. Hodis, W.J. Mack, L. LaBree, L. Cashin-Hemphill, A. Sevanian, R. Johnson, S. Azen, Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary artery atherosclerosis. J. Am. Med. Assoc. 273, 1849-1854 (1995).
[13] D.A. Butterfield, K. Hensley, M. Harris, M. Mattson, J. Carney, A model for beta-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: implications of “molecular shrapnel” for Alzheimer` s disease. Proc. West Pharmacol Soc. 38, 113-120 (1995).
[14] K. Hensley, J.M. Carney, M.P. Mattson, M. Aksenova, M. Harris, J.F. Wu, R.A. Floyd, D.A. Butterfield, A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 91, 3270- 3274 (1994).
[15] D.A. Butterfield, L. Martin, J. M. Carney, K. Hensley, A beta (25-35) peptide displays H2O2-like reactivity towards aqueous Fe2+, nitroxide spin probes, and synaptosomal membrane proteins. Life Sci. 58, 217-228 (1995).
[16] D.A. Butterfield, beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer` s disease. Chem. Res. Toxicol. 10, 495-506 (1997).
[17] R. Sultana, D.A. Butterfield, Redox proteomics studies of in vivo amyloid beta-peptide animal models of Alzheimer`s disease: Insight into the role of oxidative stress. Proteom. Clinic. Appl. 2, 685-696 (2008).
[18] C. Rice-Evans, C. Rice- Evans, B. Halliwell, G.G. Lunt, Free Radicals and Oxidative Stress: Environment, Drugs and Food Additives. Portland Press, 103-116 (1995).
[19] Y. Zhang, X. Tie, B. Bao, X. Wu, Y. Zhang, Metabolism of flavone C-glucosides and p-coumaric acid from antioxidant of bamboo leaves (AOB) in rats. B. J. Nutr. 97, 484-494 (2007).
[20] F. Borges, F. Roleira, N. Milhazes, L. Santana, E. Uriarte, Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biologicalactivity, Curr. Med. Chem. 12, 887-916 (2005).
[21] L.Y. Zang, G. Cosma, H. Gardner, X. Shi, V. Castranova, V. Vallyathan, Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. A. J. Physiol.-Cell Physiol. 279, C954-C960 (2000).
[22] K.J. Dabrowski, F.W. Sosulski, Quantitation of Free and Hydrolyzable Phenolic Acids in Seeds by Capillary Gas- Liquid Chromatography. J. Agric. Food Chem. 32, 123– 127 (1984).
[23] F. Shahidi, M. Naczk, Phenolics in Food and Nutraceuticals. CRC Press, Boca Raton, FL (2003).
[24] U. Thiyam, H. Stöckmann, T.Z. Felde, K. Schwarz, Antioxidative effect of the main sinapic acid derivatives from rapeseed and mustard oil by-products. Eur. J. Lipid Sci. Technol. 108, 239-248 (2006).
[25] T. Stevanovic, P.N. Diouf, M.E. Garcia-Perez, Bioactive polyphenols from healthy diets and forest biomass. Curr. Nutr. Food Sci. 5, 264-295 (2009).
[26] V.D. Kancheva, L. Saso, P.V. Boranova, A. Khan, M.K. Saroj, M.K. Pandey, S. Malhotra, J.Z. Nechev, S.K. Sharma, A.K. Prasad, M.B. Georgieva, C. Joseph, A.L. DePass, R.C. Rastogi, V.S. Parmar, Structure-activity relationship of dihydroxy-4-methylcoumarins as powerful antioxidants: Correlation between experimental & theoretical data and synergistic effect. Biochem. 92, 1089-1100 (2010).
[27] Y.H. Yeh, Y.T. Lee, H.S. Hsieh, D.F. Hwang, Dietary Caffeic Acid, Ferulic Acid and Coumaric Acid Supplements on Cholesterol Metabolism and Antioxidant Activity in Rats. J. Food and Drug Anal. 17, 123-132 (2009).
[28] A. Galano, M. Francisco-Marquez, J. Raul Alvarez-Idaboy, Mechanism and kinetics studies on the antioxidant activity of sinapinic acid. Phys. Chem. Chem. Phys. 13, 11199– 11205 (2011).
[29] A. Gaspar, M. Martins, P. Silva, E. M. Garrido, J. Garrido, O. Firuzi, R. Miri, L. Saso, F. Borges, Dietary Phenolic Acids and Derivatives. Evaluation of the Antioxidant Activity of Sinapic Acid and Its Alkyl Esters. J. Agric. Food Chem. 58, 11273-11280 (2010).
[30] E.G. Bakalbassis, A. Chatzopoulou, V.S. Melissas, M. Tsimidou, M. Tsolaki, A. Vafiadis, Ab initio and density functional theory studies for the explanation of the antioxidant activity of certain phenolic acids. Lipids 36, 181-190 (2001).
[31] B.H. Yoon, J.W. Jung, J.-J. Lee, Y.-W. Cho, C.-G. Jang, C. Jin, T.H. Oh, J.H. Ryu, Anxiolytic-like effects of sinapic acid in mice. Life Sci. 81, 234–240 (2007).
[32] K.J. Yun, D.J. Koh, S.H. Kim, S.J. Park, J.H. Ryu, D.G. Kim, J.Y. Lee, K.T. Lee, Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation,. J. Agric. Food Chem. 56, 10265-10272 (2008).
[33] T. Niwa, U. Doi, Y. Kato, T. Osawa, Inhibitory mechanism of sinapinic acid against peroxynitrite-mediated tyrosine nitration of protein in vitro. FEBS Lett. 459, 43-46 (1999).
[34] Y. Zou, A.R. Kim, J.E. Kim, J.S. Choi, H.Y. Chung, Peroxynitrite scavenging activity of sinapic acid (3,5-dimethoxy- 4-hydroxycinnamic acid) isolated from Brassica juncea, J. Agric. Food Chem. 50, 5884-5890 (2002).
[35] M.E. Cuvelier, H. Richard, C. Berset, Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci. Biotechnol. Biochem. 56, 324-325 (1992).
[36] O. Firuzi, L. Giansanti, R. Vento, C. Seibert, R. Petrucci, G. Marrosu, R. Agostino, L. Saso, Hypochlorite scavenging activity of hydroxycinnamic acids evaluated by a rapid microplate method based on the measurement of chloramines. J. Pharm. Pharmacol. 55, 1021-1027 (2003).
[37] N. Nenadis, O. Lazaridou, M.Z. Tsimidou, Use of reference compounds in antioxidant activity assessment. J. Agric. Food Chem. 55, 5452-5460 (2007).
[38] M. Szeląg, D. Mikulski, M. Molski, Quantum – chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites. J. Mol. Mod., DOI 10.1007/s00894-011-1306-y (2011).
[39] M. Leopoldini, N. Russo, M. Toscano, The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry 125, 288-306 (2011).
[40] M.C. Foti, C. Daquino, C. Geraci, Electron – transfer reaction of cinnamic acids and their methyl esters with the DPPH. radical in alcoholic solutions. J. Org. Chem. 69, 2309-2314 (2004).
[41] G. Litwinienko, K.U. Ingold, Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem. 69, 5888-5896 (2004).
[42] M. Musialik, G. Litwinienko, Scavenging of dpph. radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org. Lett. 7, 4951-4954 (2005).
[43] I. Nakanishi, T. Kawashima, K. Ohkubo, H. Kanazawa, K. Inami, M. Mochizuki, K. Fukuhara, H. Okuda, T. Ozawa, S. Itoh, S. Fukuzumi, N. Ikota, Electron – transfer mechanism in radical scavenging reactions by vitamin E model in a protic medium. Org. & Biomolecular Chem. 3, 626-629 (2005).
[44] G. Litwinienko, K.U. Ingold, Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc. Chem. Res. 40, 222-230 (2007).
[45] M. Leopoldini, N. Russo, M. Toscano, Gas and Liquid Phase Acidity of Natural Antioxidants. J. Agric. Food Chem. 54, 3078–3085 (2006).
[46] M. Leopoldini, N. Russo, M. Toscano, The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 125, 288–306 (2011).
[47] D. Mikulski, M. Szeląg, M. Molski, R. Górniak, Quantumchemical study on the antioxidation mechanisms of transresveratrol reactions with free radicals in the gas phase, water and ethanol environment. J. Mol. Structure 951, 37-48 (2010).
[48] Y.J. Shang, Y.P. Qian, X.D. Liu, F. Dai, X.L. Shang, W.Q. Jia, Q. Liu, J.G. Fang, B. Zhou, Radical – scavenging activity and mechanism of resveratrol – oriented analogues: influence of the solvent, radical, and substitution. J. Org. Chem. 74, 5025-5031 (2009).
[49] S. Sebastian, N. Sundaraganesan, S. Manoharan, Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 74, 312-323 (2009).
[50] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Roob, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Milliam, S.S. Iyengar, J. Tomasi, V. Barone, B. Menucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Ciosłowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision C02. Gaussian Inc., Wallingford, CT, 2003.
[51] K. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Review B 136, 864-871 (1964).
[52] W. Kohn, L.J. Sham, Self – consistent equations including exchange and correlation effects. Phys. Review A 140, 1133-1138 (1965).
[53] C. Lee, W. Yang, R.G. Parr, Development of the Cole – Salvetti correlation energy formula into a functional of the electron density. Physical Review B 37, 785-789 (1988).
[54] M. Cossi, N. Rega, G. Scalmani, V. Barone, Energies, structures, and electronic properties of molecules in solutions with the C-PCM solvation model. J. Comp. Chem. 24, 669-681 (2003).
[55] J.S. Wright, E.R. Johnson, G.A. DiLabio, Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J. Am. Chem. Soc. 123, 1173-1183 (2001).
[56] V.D Parker, Homolytic bond (H-A) dissociation free energies in solution-applications of the standard potential of the (H+/H) couple. J. Am. Chem. Soc. 114, 7458-7462 (1992).
[57] M.M. Bizarro, B.J.C. Cabral, R.M.B. dos Santos, J.A.M. Simoes, Substituent effects on the O-H bond dissociation enthalpies in phenolic compounds: agreements and controversies. Pure Appl. Chem. 71, 1249-1256 (1999).
[58] E. Klein, J. Rimarcik, V. Lukes, DFT/B3LYP study of the O-H bond dissociation enthalpies and proton affinities of para- and meta-substituted phenols in water and benzene. Acta Chim. Slovaca 2, 37-51 (2009).
[59] P.W. Atkins, Physical chemistry.6th edn. Oxford University Press, Oxford (1998).