• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 18 (1) 2012, 25-37

Propagation of Harmonic Plane Waves in a Rotating Elastic Medium under Two-Temperature Thermoelasticity with Relaxation Parameter

Mukhopadhyay Santwana, Prasad Rajesh *

Department of Applied Mathematics
Institute of Technology
Banaras Hindu University, Varanasi-221005, India
*Corresponding author: e-mail: mukhosant.apm@itbhu.ac.in

Received:

(Received: 17 July 2011; revised: 03 May 2012; accepted: 04 May 2012; published online: 11 June 2012)

DOI:   10.12921/cmst.2012.18.01.25-37

OAI:   oai:lib.psnc.pl:422

Abstract:

The present work investigates the propagation of harmonic plane waves in an isotropic and homogeneous elastic medium that is rotating with uniform angular velocity by employing the two-temperature generalized thermoelasticity, recently introduced by Youssef (IMA Journal of Applied Mathematics, 71, 383-390, 2006). Dispersion relation solutions for longitudinal as well as transverse plane waves are obtained analytically. Asymptotic expressions of several important characterizations of the wave fields, such as phase velocity, specific loss, penetration depth, amplitude coefficient factor and phase shift of thermodynamic temperature are obtained for high frequency as well as low frequency values. A critical value of the two-temperature parameter for the low frequency case is obtained. Using Mathematica, numerical values of the wave fields at intermediate values of frequency and for various values of the twotemperature parameter are computed. A detailed analysis of the effects of rotation on the plane wave is presented on the basis of analytical and numerical results. An in-depth comparative analysis of our results with the corresponding results of the special cases of absence of rotation of the body and with the case of generalized thermoelasticity is also presented. The most significant points are highlighted.

Key words:

generalized thermoelasticity, penetration depth, phase velocity, rotating elastic medium, specific loss, two-temperature thermoelasticity

References:

[1] P.J. Chen, M.E. Gurtin, On a theory of heat conduction involving two-temperatures. J. Appl. Math. Phys. (ZAMP) 19, 614-627, (1968).
[2] P.J. Chen, M.E. Gurtin, W.O. Williams, On the thermodynamics of non-simple elastic materials with two temperatures. J. Appl. Math. Phys. (ZAMP) 20, 107-112 (1969).
[3] M.E. Gurtin, W.O. Williams, On the Clausius-Duhem inequality. Z. angew. Math Phys. 17, 626-633 (1966).
[4] D. Iesan, On the thermodynamics of non-simple elastic materials with two temperatures. J. Appl. Math. Phys. (ZAMP) 21, 583-591 (1970).
[5] W.E. Warren, P.J. Chen, Wave propagation in the two temperature theory of thermoelasticity. Acta Mech. 16, 21-33 (1973).
[6] W.E. Warren, Thermoelastic wave propagation from cylindrical and spherical cavities in the two-temperature theory. J. Appl. Phys. 43, 3595-3597 (1972).
[7] D.E. Amos, On a half-space solution of a modified heat equation. Quart. Appl. Math. 27, 359-369 (1969).
[8] S. Chakrabarti, Thermoelastic waves in non-simple media. Pure Appl. Geophys. 109, 1682-1692 (1973).
[9] T.W. Ting, A cooling process according to two-temperature theory of heat conduction. J. Math. Anal. Appl. 45, 23-31 (1974).
[10] D. Colton, J. Wimp, Asymptotic behavior of the fundamental solution to the equation of heat conduction in two-temperature. J. Math. Anal. Appl. 69, 411-418 (1979).
[11] R. Quintanilla, On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mech. 168, 61-73 (2004).
[12] P. Puri, P.M. Jordan, On the propagation of harmonic plane waves under the two- temperature theory. Int. J. Engg. Sci. 44, 1113-1126 (2006).
[13] H.M. Youssef, Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383-390 (2006).
[14] H.W. Lord, Y. Shulman, A Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299-309 (1967).
[15] A.E. Green, K.A. Lindsay, Thermoelasticity. J. Elasticity 2, 1-7 (1972).
[16] A. Magana, R. Quintanilla, Uniqueness and growth of solutions in two temperature generalized thermoelastic theories. Math Mech. Solids 14, 622-634 (2009).
[17] H.M. Youssef, E.A. Al-Lehaibi, State-space approach of two-temperature generalized thermoelasticity of one dimensional problem. Int. J. Solids Struct. 44, 1550-1562 (2007).
[18] H.M. Youssef, Problem of generalized thermoelastic infinite cylindrical cavity subjected to a ramp-type heating and loading. Arch. Appl. Mech. 75, 553-565 (2006).
[19] H.M. Youssef, Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383-390 (2006).
[20] H.M. Youssef, Two-temperature generalized thermoelastic infinite medium with cylindrical cavity subjected to moving heat source. Arch. Appl. Mech. 80, 1213-1224 (2010).
[21] R. Kumar, R. Prasad, S. Mukhopadhyay, Variational and reciprocal principles in two- temperature generalized thermoelasticity. J. Therm. Stresses 33, 161-171 (2010).
[22] S. Mukhopadhyay, R. Kumar, Thermoelastic interaction on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity. J. Therm. Stresses 32, 341-360 (2009).
[23] R. Quintanilla, P.M. Jordan, A note on the two temperature theory with dual phase lag delay: some exact solutions. Mech. Res. Comm. 36, 796-803 (2009).
[24] R. Kumar, S. Mukhopadhyay, Effects of thermal relaxation time on plane wave propagation under two-temperature thermoelasticity. Int. J. Engg. Sci. 48, 128-139 (2010).
[25] R. Kumar, R. Prasad, S. Mukhopadhyay, Some theorems on two-temperature generalized thermoelasticity. Arch. Appl. Mech. 81, 1031-1040 (2011).
[26] M. Ezzat, F. Hamza, E. Awad, Electro-magneto-thermoelastic plane waves in micropolar solid involving two temperatures. Acta Mech. Solida Sinica. 23, 200-212 (2010).
[27] S. Mukhopadhyay, R. Prasad, R. Kumar, On the theory of two-temperature generalized thermoelasticity with dual phase lags. J. Therm. Stresses 34, 352-365 (2011).
[28] P. Chadwick, I.N. Sneddon, Plane waves in an elastic solid conducting heat. J. Mech. Phys Solids 6, 223-230 (1958).
[29] P. Chadwick, Thermoelasticity: the dynamic theory. in: R. Hill, I.N. Sneddon (Eds.), Progress in Solid Mechanics, North-Holland, Amsterdam, I, 263-328 (1960).
[30] A. Nayfeh, S. Nemat-Nasser, Thermoelastic waves in solids with thermal relaxation. Acta Mech. 12, 53-69 (1971).
[31] P. Puri, Plane waves in generalized thermoelasticity. Int. J. Eng. Sci. 11, 735-744 (1973).
[32] V.K. Agarwal, On plane waves in generalized thermoelasticity. Acta Mech. 31, 185-198 (1979).
[33] A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation. J. Elast. 31, 189-208 (1993).
[34] D.S. Chandrasekharaiah, Thermoelastic plane waves without energy dissipation. Mech. Res. Commun. 23, 549-555 (1996).
[35] P. Puri, P.M. Jordan, On the propagation of plane waves in type-III thermoelastic media. Proc. Royal Soc. A 460, 3203- -3221 (2004).
[36] A.E. Green, M. Naghdi, On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 253-264 (1992).
[37] M. Schoenberg, D. Censor, Elastic waves in rotating media. Quart. Appl. Math. 31, 115-125 (1973).
[38] P. Puri, Plane thermoelastic waves in rotating media. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 24, 137-144 (1976).
[39] D.S. Chandrasekharaiah, K.R. Srikantiah, Thermoelastic plane waves in a rotating solid. Acta Mech. 50, 211-219 (1984).
[40] S.K. Roychoudhari, Effect of rotation and relaxation times on plane waves in generalized thermoelasticity. J. Elasticity 21, 59-68 (1985).
[41] S.K. Roychoudhari, N. Bandyopadhyay, Thermoelastic wave propagation in rotating elastic medium without energy dissipation. Int. J. Math. and Math. Sci. 1, 99-107 (2005).
[42] D.S. Chandrasekharaiah, Thermoelastic plane waves without energy dissipation in a rotating body. Mech. Res. Comm. 24, 551-560 (1997).
[43] D.S. Chandrasekharaiah, Plane waves in a rotating elastic solid with voids. Int. J. Engg. Sci. 25, 591-596 (1987).
[44] Mohamed I.A. Othman, Effect of rotation on plane waves in generalized thermo-elasticity with two relaxation times. Int. J. Solids and Structures, 41, 2939-2956 (2004).
[45] J.L. Auriault, Body wave propagation in rotating elastic media. Mech. Res. Comm. 31, 21-27 (2004).
[46] J.N. Sharma, Mohamed I.A. Othman, Effect of rotation on generalized thermo-viscoelastic Rayleigh–Lamb waves. Int. J. Solids and Structures 44, 4243-4255 (2007).
[47] S. Punnusamy, Foundation of complex analysis. Narosa Publishing House (2001).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST