• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 11 (1) 2005, 73-79

Poisson’s ratio of anisotropic systems

Wojciechowski Krzysztof W.

Institute of Molecular Physics, Polish Academy of Sciences
M. Smoluchowskiego 17, 60-179 Poznań, Poland

Received:

Rec. 30 May 2005

DOI:   10.12921/cmst.2005.11.01.73-79

OAI:   oai:lib.psnc.pl:584

Abstract:

The Poisson’s ratio of anisotropic materials depends, in general, both on a “longitudinal” direction along which the stress is changed and on a “transverse” direction in which the transverse deformation is measured. For cubic media there exist “longitudinal” directions, parallel to the 4-fold and 3-fold axes, for which the Poisson’s ratio does not depend on the “transverse” direction. Depending on the tensor of elastic compliances (or elastic constants), crystals of cubic symmetry can exhibit negative Poisson’s ratio in both these directions (they are called strongly auxetics), in one of them (i.e. either along the 4-fold axis or along the 3-fold one; they are called partially auxetic) or in none of them. For crystals exhibiting 3-fold symmetry axis the Poisson’s ratio along this axis does not depend on the “transverse” direction. For other “longitudinal” directions the Poisson’s ratio depends, in general, on the “transverse” direction. The Poisson’s ratio averaged with respect to the “transverse” direction depends only on the “longitudinal” direction and can be conveniently presented graphically. As an example the f.c.c. hard sphere crystal is considered. It is shown that the average (with respect to “transverse” direction) Poisson’s ratio of the hard sphere crystal is positive for all “longitudinal” directions. One should add, however, that there exist directions for which the (not averaged) Poisson’s ratio of hard spheres is negative.

Key words:

auxetics, elastic properties of crystals of cubic symmetry, negative Poisson’s ratio

References:

[1] L. D. Landau and E. M. Lifshits, Theory of elasticity, Pergamon Press, London, 1986.
[2] R. S. Lakes, Science 235, 1038 (1987).
[3] J. Glieck, The New York Times, 14 April 1987.
[4] K. E. Evans, M. A. Nkansah, I. J. Hutchinson, Nature 353, 124 (1991).
[5] G. Milton, J. Mech. Phys. Solids 40, 1105 (1992).
[6] D. A. Konyok, K. W. Wojciechowski, Yu. M. Pleskachevskii, S. V. Shilko, Mech. Compos. Mater. Construct. 10, 35 (2004), in Russian.
[7] W. G. Cady, Piezoelectricity, Dover, New York, 1964.
[8] Y. Li, Phys. Status Solidi (a) 38, 171 (1976).
[9] J. H. Weiner, Statistical Mechanics of Elasticity, Wiley, New York, 1983.
[10] K. W. Wojciechowski and K. V. Tretiakov, Comp. Phys. Commun. 121-122, 528 (1999).
[11] M. V. Jaric and U. Mohanty, Phys. Rev. Lett. 58, 230 (1987).
[12] D. Frenkel and A. J. C. Ladd, Phys. Rev. Lett. 59, 1169 (1987).
[13] K. V. Tretiakov and K. W. Wojciechowski, J. Chem. Phys. (2005).
[14] F. Milstein and K. Huang, Phys. Rev. B19, 2030 (1979).
[15] R. H. Baughman, J. M. Shacklette, A. A. Zakhidov and S. Stafstrom, Nature 392, 362 (1998).
[16] K. J. Runge and G. V. Chester, Phys. Rev. A36, 4852 (1987).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST