• CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS
GET_pdf delibra

Volume 19 (2) 2013, 115-121

Percolation in Systems Containing Ordered Elongated Objects

Romiszowski Piotr *, Sikorski Andrzej

Department of Chemistry, University of Warsaw
Pasteura 1, 02-093 Warsaw, Poland
*E-mail: prom@chem.uw.edu.pl

Received:

Received: 21 February 2013; revised: 13 April 2013; accepted: 16 April 2013; published online: 22 May 2013

DOI:   10.12921/cmst.2013.19.02.115-121

OAI:   oai:lib.psnc.pl:463

Abstract:

We studied the percolation and jamming of elongated objects using the Random Sequential Adsorption (RSA) technique. The objects were represented by linear sequences of beads forming needles. The positions of the beads were restricted to vertices of two-dimensional square lattice. The external field that imposed ordering of the objects was introduced into the model. The percolation and the jamming thresholds were determined for all systems under consideration. The influence of the chain length and the ordering on both thresholds was calculated and discussed. It was shown that for a strongly ordered system containing needles the ratio of percolation and jamming thresholds cp/cj is almost independent on the needle length d.

Key words:

jamming, Monte Carlo method, percolation, random sequential adsorption

References:

[1] D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor
and Francis, London 1994).
[2] L.N. Lisetski, S.S. Minenko, A.P. Fedoryako and N.I. Lebovka, Dis-
persions of multiwalled carbon nanotubes in different nematic meso-
gens: The study of optical transmittance and electrical conductivity,
Physica E 41, 431 (2009).
[3] J.G. Meier, C. Crespo, J.L. Pelegay, P. Castell, R. Sainz, W.K. Maser,
A.M. Benito, Processing dependency of percolation threshold of
MWCNTs in a thermoplastic elastomeric block copolymer, Polymer
52, 1788 (2011).
[4] Matoz-Fernandes , D.H. Linares, A.J. Ramirez-Pastor, Europhys.Lett.,
Determination of the critical exponents for the isotropic-nematic
phase transition in a system of long rods on two-dimensional lattices:
Universality of the transition, Europhys.Lett. 82, 50007 (2008).
[5] L.G. Lopez, D.H. Linares, A.J. Ramirez-Pastor, S.A. Cannas, Phase
diagram of self-assembled rigid rods on two-dimensional lattices:
Theory and Monte Carlo simulations, J. Chem. Phys. 133, 134706 (2010).
[6] V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Dependence of the per-
colation threshold on the size of the percolating species, Physica A
327, 71 (2003).
[7] V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Percolation of polyatomic
species on a square lattice, Eur. Phys. J. B 36, 391 (2003).
[8] J.W. Evans, Random and cooperative sequential adsorption, Rev.
Mod. Phys. 65, 1281 (1993).
[9] J. Talbot, G. Tarjus, P.R. Van Tassel, P. Viot, From car parking to
protein adsorption: an overview of sequential adsorption processes,
Colloid. Surface A 165, 287 (2000).
[10] P. Adamczyk, P. Polanowski, A. Sikorski, Percolation in polymer-
solvent systems: A Monte Carlo study, J. Chem. Phys. 131, 234901 (2009).
[11] M. Pawłowska, S. Żerko, A. Sikorski, Note: Percolation in two-
dimensional flexible chains systems, J. Chem. Phys. 136, 046101 (2012).
[12] R.D. Vigil, R.M. Ziff, Random sequential adsorption of unoriented
rectangles onto a plane, J. Chem. Phys. 91, 2599 (1989).
[13] R.M. Ziff, R.D. Vigil, Kinetics and fractal properties of the random
sequential adsorption of line segments, J. Phys. A: Math. Gen. 23,
5103 (1990).
[14] N. Vandewalle, S. Galam, M. Kramer, A new universality for random
sequential deposition of needles, Eur. Phys. J. B 14, 407 (2000).
[15] G. Kondrat, A. Pekalski, Percolation and jamming in random se-
quential adsorption of linear segments on a square lattice,Phys. Rev.
E 63, 051108 (2001).
[16] G. Kondrat, A. Pekalski, Percolation and jamming in random bond
deposition, Phys. Rev. E 64, 056118 (2001).
[17] G. Kondrat, Influence of temperature on percolation in a simple
model of flexible chains adsorption, J. Chem. Phys. 117, 6662 (2002).
[18] P. Adamczyk, P. Romiszowski, A. Sikorski, A simple model of stiff
and flexible polymer chain adsorption: The influence of the internal
chain architecture, J. Chem. Phys. 128, 154911 (2008).
[19] E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical
percolation threshold of overlapping ellipsoids, Phys. Rev. E 52, 819
(1995).
[20] J.-S. Wang, Series expansion and computer simulation studies of
random sequential adsorption, Colloid. Surface A 165, 325 (2000).
[21] X. Wang, A.P. Chatterjee, Connectedness percolation in athermal
mixtures of flexible and rigid macromolecules: Analytic theory, J.
Chem. Phys. 118, 10787 (2003).
[22] Y.B. Yi, A.M. Sastry, Analytical approximation of the percolation
threshold for overlapping ellipsoids of revolution, Proc. Royal Soc.
Lond. A 460, 2353 (2004).
[23] A. P. Chatterjee, Percolation thresholds for rod-like particles: poly-
dispersity effects, J. Phys.: Condens. Matter 20, 255250 (2008).
[24] V.A. Cherkasova, Y.Y. Tarasevich, N.I. Lebovka, N.V. Vygornitskij,
Percolation of aligned dimers on a square lattice, Eur. Phys. J. B 74,
205 (2010).
[25] N.I. Lebovka, N.N. Karmazina, Y.Yu. Tarasevich, V.V. Laptev, Ran-
dom sequential adsorption of partially oriented linear k-mers on
a square lattice, Phys. Rev. E, 85, 029902 (2012).
[26] A. Ghosh, D. Dhar, On the orientational ordering of long rods on
a lattice, Eur. Phys. Lett. 78, 20003 (2007).
[27] P.Kählitz, H.Stark, Phase ordering of hard needles on a quasicrys-
talline substrate, J.Chem.Phys. 136, 174705 (2012).
[28] Y.Yu. Tarasevich, N.I.Lebovka, V.V. Laptev, Percolation of linear
k-mers on a square lattice: From isotropic through partially ordered
to completely aligned states, Phys. Rev. E 86, 061116 (2012).
[29] J. Hoshen, R. Kopelman, Percolation and cluster distribution. I. Clus-
ter multiple labeling technique and critical concentration algorithm,
Phys. Rev. B 14, 3438 (1976).
[30] M. Dolz, F. Nieto, A.J. Ramirez-Pastor, Dimer site-bond percolation
on a square lattice, Eur. Phys. J. B 43, 363 (2005).

  • JOURNAL MENU

    • AIMS AND SCOPE
    • EDITORS
    • EDITORIAL BOARD
    • NOTES FOR AUTHORS
    • CONTACT
    • IAN SNOOK PRIZES 2015
    • IAN SNOOK PRIZES 2016
    • IAN SNOOK PRIZES 2017
    • IAN SNOOK PRIZES 2018
    • IAN SNOOK PRIZES 2019
    • IAN SNOOK PRIZES 2020
    • IAN SNOOK PRIZES 2021
    • IAN SNOOK PRIZES 2024
  • GALLERY

    CMST_vol_30_1-2_2024_okladka_
  • LAST ISSUE

  • MANUSCRIPT SUBMISSION

    • SUBMIT A MANUSCRIPT
  • FUTURE ISSUES

    • ACCEPTED PAPERS
    • EARLY VIEW
    • Volume 31 (1) – in progress
  • ALL ISSUES

    • 2024
      • Volume 30 (3–4)
      • Volume 30 (1–2)
    • 2023
      • Volume 29 (1–4)
    • 2022
      • Volume 28 (4)
      • Volume 28 (3)
      • Volume 28 (2)
      • Volume 28 (1)
    • 2021
      • Volume 27 (4)
      • Volume 27 (3)
      • Volume 27 (2)
      • Volume 27 (1)
    • 2020
      • Volume 26 (4)
      • Volume 26 (3)
      • Volume 26 (2)
      • Volume 26 (1)
    • 2019
      • Volume 25 (4)
      • Volume 25 (3)
      • Volume 25 (2)
      • Volume 25 (1)
    • 2018
      • Volume 24 (4)
      • Volume 24 (3)
      • Volume 24 (2)
      • Volume 24 (1)
    • 2017
      • Volume 23 (4)
      • Volume 23 (3)
      • Volume 23 (2)
      • Volume 23 (1)
    • 2016
      • Volume 22 (4)
      • Volume 22 (3)
      • Volume 22 (2)
      • Volume 22 (1)
    • 2015
      • Volume 21 (4)
      • Volume 21 (3)
      • Volume 21 (2)
      • Volume 21 (1)
    • 2014
      • Volume 20 (4)
      • Volume 20 (3)
      • Volume 20 (2)
      • Volume 20 (1)
    • 2013
      • Volume 19 (4)
      • Volume 19 (3)
      • Volume 19 (2)
      • Volume 19 (1)
    • 2012
      • Volume 18 (2)
      • Volume 18 (1)
    • 2011
      • Volume 17 (1-2)
    • 2010
      • Volume SI (2)
      • Volume SI (1)
      • Volume 16 (2)
      • Volume 16 (1)
    • 2009
      • Volume 15 (2)
      • Volume 15 (1)
    • 2008
      • Volume 14 (2)
      • Volume 14 (1)
    • 2007
      • Volume 13 (2)
      • Volume 13 (1)
    • 2006
      • Volume SI (1)
      • Volume 12 (2)
      • Volume 12 (1)
    • 2005
      • Volume 11 (2)
      • Volume 11 (1)
    • 2004
      • Volume 10 (2)
      • Volume 10 (1)
    • 2003
      • Volume 9 (1)
    • 2002
      • Volume 8 (2)
      • Volume 8 (1)
    • 2001
      • Volume 7 (2)
      • Volume 7 (1)
    • 2000
      • Volume 6 (1)
    • 1999
      • Volume 5 (1)
    • 1998
      • Volume 4 (1)
    • 1997
      • Volume 3 (1)
    • 1996
      • Volume 2 (1)
      • Volume 1 (1)
  • DATABASES

    • AUTHORS BASE
  • CONTACT
  • LAST ISSUE
  • IN PROGRESS
  • EARLY VIEW
  • ACCEPTED PAPERS

© 2025 CMST